期刊文献+

分数布朗运动环境下缺口期权定价模型 被引量:4

Gap option pricing model in fractional Brownian motion environment
下载PDF
导出
摘要 假定股票价格遵循分数布朗运动驱动的随机微分方程,利率满足由分数布朗运动驱动的Va-sicek模型,建立了分数布朗运动环境下金融市场数学模型.利用分数布朗运动随机分析理论和保险精算方法,得到了缺口期权定价公式. This paper assumed that asset price process follows stochastic differential equations driven by fractional Brownian motion,and interest rate satisfied the Vasicek model.The financial market mathematical model was built,driven by fractional Brownian motion.Using for stochastic analysis theory fractional Brownian motion and the method for actuarial mathematics,the pricing formula of gap option was obtained.
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2012年第5期616-619,共4页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 陕西省教育厅专项基金项目(2010JM1010)
关键词 分数布朗运动 缺口期权 随机利率 保险精算 fractional Brownian motion gap option stochastic interest rate actuarial mathematics
  • 相关文献

参考文献7

  • 1张艳,孙彤.关于欧式缺口期权定价模型的研究[J].徐州师范大学学报(自然科学版),2006,24(4):44-47. 被引量:4
  • 2BLADT M, RYDBERG T. An actuarial approach to option pri- cing under the physical measure and without market assumptions [ J]. Insurance : Mathematics and Economics, 1998,22 ( 1 ) :65 -73.
  • 3XUE H, SUN Y. Pricing european option under fractional jump - diffusion Ornstein - Uhlenbeck model [ C ]//Conference Pro- ceeding of 2009 International Institute of Applied Statistics Stud- ies, Qiugdao: Aussino Academic Publishing House, 2009:164 - 169.
  • 4XUE H, Li Q. An actuarial approach to the minimum or maxi- mum option pricing in fractional Brownian motion environment [C]//Proceedings 2010 2nd IEEE intemational conference on information and financial engineering, September, Chongqing: IEEE PRESS. 2010:216 -219.
  • 5BIORKT, HULTH. A note on Wick products and the fractional Black- Scholes model [ J ]. Finance and Stochastics, 2005, 9 (2) : 197 -209.
  • 6BIAGINI F, HU Y, OKSENDAL B,et al. Stochastic calculus for fractional Brownian notion and applications [ M ]. New York: Springer, 2008.
  • 7于艳娜,孔繁亮.分数布朗运动环境中应用鞅方法定价欧式期权[J].哈尔滨商业大学学报(自然科学版),2010,26(4):433-435. 被引量:3

二级参考文献9

  • 1[3]Hull J C.Options,futures,and other derivatives[M].4 版.北京:清华大学出版社,2001:237-242.
  • 2[4]Chang Der-Chen,Chang Eric C,Fan Haitao.Mathematical analysis of pricing of lookback performance options[J].Applicable Analysis,2003,82(10):937.
  • 3[2]姜礼尚.期权定价的数学模型和方法[M].北京:高等教育出版社,2004:56-70.
  • 4HU Y,OKSENDAL B.Fractional white noise and applications to finance[J].Infinite Dimensional Analysis,2003(6):1-32.
  • 5ELTON E J,GRUBER M J.Modern Portfolio Theory and Investment Analysis[M].New York:Wiley,1995:15-19.
  • 6姜礼尚.期权定价的数学模型和方法[M].北京:高等教育出版社.2001
  • 7肖艳清,邹捷中.分数布朗运动环境下的期权定价与测度变换[J].数学的实践与认识,2008,38(20):58-62. 被引量:16
  • 8孔繁亮.B值渐近鞅的强弱大数定律[J].数学学报(中文版),1998,41(3):667-672. 被引量:27
  • 9张淑娟,孔繁亮.具有不同借贷利率的幂型欧式期权定价的鞅方法[J].哈尔滨理工大学学报,2009,14(5):93-96. 被引量:1

共引文献5

同被引文献30

  • 1张艳,孙彤.关于欧式缺口期权定价模型的研究[J].徐州师范大学学报(自然科学版),2006,24(4):44-47. 被引量:4
  • 2薛红.随机利率情形下的多维Black-Scholes模型[J].工程数学学报,2005,22(4):645-652. 被引量:12
  • 3王铁,王威.布朗运动的最大值和阶梯期权[J].经济数学,2006,23(1):46-51. 被引量:3
  • 4于春红,周璐.我国可转换债券定价的实证分析[J].商业经济,2007(3):89-91. 被引量:3
  • 5GUASONI P. No arbitrage under transaction costs with fractionalBrownian motion and beyond [ J] . Mathematical Finance, 2006,16(3): 569 -582.
  • 6BIAGINI F, HU Y, OKSENDAL B, et al. Stochastic calculusfor fractional Brownian notion and applications [ M ]. New York :Springer, 2008.
  • 7HU Y, OKSENDAL B. Fractional white noise calculus and application to finance [ J ]. Inf. Dim. Anal. Quantum Prob. Rel. Top, 2003, 6(1):1-32.
  • 8NECULA C. Option pricing in fractional Brownian motion environment [ R ]. Preprint, Academy of Economic Studies Bucharest, www. dofin, ase. ro/.
  • 9何成洁,沈明轩.分数布朗运动环境中欧式缺日期权的定价[J].高校理论研究,2008,24:435-439.
  • 10Mogens Bladt,Tina Hviid Rydberg.??An actuarial approach to option pricing under the physical measure and without market assumptions(J)Insurance Mathematics and Economics . 1998 (1)

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部