期刊文献+

基于GO的蛋白质亚细胞定位方法研究 被引量:1

Study of Prediction Method for Protein Subcellular Localization Using GO
下载PDF
导出
摘要 蛋白质的亚细胞定位对蛋白质功能的研究有重要的意义。蛋白质合成后只有被转运到特定的亚细胞中,才能有效地发挥其功能。选择GO信息作为蛋白质的特征信息,并采用模糊K近邻(Fuzzy KNN)算法对蛋白质亚细胞定位进行预测。预测结果显示,GO信息可以提高亚细胞定位的准确率;而采用Jackknife方法,准确率达到73%。 Protein subcellular localization plays an important role in researching the function of protein.It will work effectively only when transported to right sub-cell after it was compounded.GO information as the feature vector of protein was used to predict protein subcellular localization,with Fuzzy KNN as classifiers.As the prediction results showed,the accuracy was improved by using GO information;with the method of Jackknife,the accuracy was 73%.
作者 孙晶京
出处 《农业网络信息》 2012年第11期21-23,共3页 Agriculture Network Information
关键词 亚细胞定位 GO数据库 特征提取 FUZZY KNN算法 subcellular localization GO database feature selection fuzzy KNN
  • 相关文献

参考文献8

  • 1Nakashima H ,Nishikawa K. Discrimiation of intracellular and ex- tracellular proteins using amino acid composition and residue-pair frequencies[J]. Mol Bio1,1994,238(1):54-61.
  • 2Nakai K,Horton P. PSORT:a program for detecting sorting signals in proteins and predicting their subcellular localization [J]. Trends in Biochemical Science 1999,(24):34-36.
  • 3Emanuelsson O,Nielsen H,Brunak S,von Heijne G. Predicting sub- cellular localization of proteins based on their N-terminal amino acid sequence[J]. Journal of Molecular Biology 2000,(300):1005-1016.
  • 4Small I, Peeters N, Legeai F,Lurin C. Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences [J].Pro- teomics 2004,4:1581-1590.
  • 5Chou, K.C., Cai Yu-Dong. Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Loca- tion[J]. The Journal of Biological Chemistry, 2002,277 (48):45765- 45769.
  • 6Guo Jian. A Novel Method for Protein Subcellular Localization Based on Boosting and Probabilistic Neural Network [C]. Conferences in Research and Practice in Information Technology,2002.
  • 7Chou K C, Cai Y D. Prediction of protein subcellular locations by GO-FunD-PseAA predictor [J].Biochem Biophys Res Commun, 2004,320(4):1236-1239. ~.
  • 8沈金城,张松,孙之荣.一种基于GO分子功能信息的序列编码辅助预测亚细胞定位方法[J].科学通报,2007,52(13):1536-1541. 被引量:4

二级参考文献1

共引文献3

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部