期刊文献+

[emim]OTf离子液体中镀铌不锈钢双极板在PEMFC环境中的电化学行为 被引量:4

Electrochemical Behavior of Stainless Steel with Niobium Electrodeposited in [emim]OTf Ionic Liquids in PEMFC Environment
原文传递
导出
摘要 以对水和空气稳定的离子液体1-乙基-3-甲基咪唑三氟甲磺酸盐([emim]OTf)为电解质,在不锈钢双极板表面电沉积铌,并在模拟质子交换膜燃料电池(PEMFC)环境中研究了镀铌改性的双极板的电化学行为。结果表明,铌镀层以孤岛的形式均匀分布在不锈钢表面,其高度在100nm以内。XPS、XRD测试结果表明,镀铌不锈钢表面生成化学惰性良好的NbO、Nb2O5。在模拟阳极环境中,镀铌不锈钢的腐蚀电位比不锈钢的腐蚀电位提高530mV;恒电位-0.1V时电流密度从4.5315μA·cm-2降低到2.7554μA·cm-2;在模拟阴极环境中,镀铌不锈钢的腐蚀电位比不锈钢提高430mV,恒定电位0.6V时电流密度从4.4008μA·cm-2降低到0.0028μA·cm-2。电化学测试结果表明,镀铌不锈钢的电化学极化性能得到改善,反应电阻增大,提高了耐蚀性能。 In order to enhance the corrosion resistance of 304 stainless steel,niobium was electrodeposited on its surface in air-and-water-stable 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate([emim]OTF) ionic liquids.The electrochemical behaviors of bare and niobium coated 304 stainless steel were evaluated by electrochemical tests in simulated PEMFC environment.The results show that deposited niobium is finely dispersed on the surface of 304 stainless steel as isolated islands and that the height of isolated island is within 100 nm.The result of X-ray photoelectron spectroscopy(XPS) and X-ray diffraction analysis(XRD) manifest that the smooth and strong chemical inertness compound film is obtained on the surface of 304 stainless steel,which is mainly composed of NbO and Nb2O5.The thin composite film acts as barrier and remarkably improves the corrosion resistance of 304 stainless steel in PEMFC environment.
机构地区 大连海事大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第3期569-573,共5页 Rare Metal Materials and Engineering
基金 国家高技术研究发展计划项目(2009AA05Z120)
关键词 不锈钢双极板 离子液体 电沉积 耐蚀性 stainless steel bipolar plates niobium ionic liquids electrodeposition corrosion resistance
  • 相关文献

参考文献14

  • 1Wind Jet al. JPower Source[J], 2002, 105(2): 256.
  • 2Zhang Jet al. US Patent, 0033408- A1 [P], 2004.
  • 3Masahiro Seo et al. Corrosion Science[J], 1986, 26(11): 949.
  • 4Neusa Alonso-Falleiros, Stephan Wolynec. Materials Research [J], 1998, 1(1): 39.
  • 5Weil K Set al. Int JHydrogen Energy[J], 2007, 32(16): 3724.
  • 6Sung-Tae Hong K. Scott Weil. J Power Source [J], 2007, 168(5): 408.
  • 7Sung-Tae Hong et al. JPower Source [J], 2010, 195(9): 2592.
  • 8Koura Net al. J Surf Finish Soc Jpn [J], 1994, 45(4): 805.
  • 9Stafford Get al. Electrochemical Science and Engineering[M]. Weinheim: Wiley-VCH, 2002, 7:291.
  • 10Stafford G R, Haarberg G M. Plasmas & lons[J], 1999(1): 35.

同被引文献57

  • 1陈惠,刘洪波,夏笑虹,杨丽,何月德.石墨/酚醛树脂复合材料双极板的制备与性能[J].复合材料学报,2015,32(3):744-755. 被引量:15
  • 2申屠超,金建忠.铅酸蓄电池容量恢复电解液添加剂的研究[J].电源技术,2007,31(6):494-495. 被引量:4
  • 3王剑莉,孙俊才,田如锦,徐靖.表面改性不锈钢双极板的性能研究[J].电源技术,2007,31(9):725-727. 被引量:10
  • 4Reza Taherian. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection [J]. J Power Sources, 2014,265:370.
  • 5Hermann A, Chaudhuri T, Spagnol P. Bipolar plates for PEM fuel cells: A review [J]. Int J Hydrogen Energy, 2005,30(12):1297.
  • 6Tjong S C. Polymer nanocomposite bipolar plates reinforced with carbon nanotubes and graphite nanosheets [J]. Energy Environmental Sci, 2011,4 ( 3 ) : 605.
  • 7Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research [J]. Appl Energy,2011, 88(4) :981.
  • 8Steele B C, Heinzel A. Materials for fuel-cell technologies [J]. Nature,2001,414(6861) :345.
  • 9Ous T, Arcoumanis C. The formation of water droplets in an air-breathing PEMFC[J] Int J Hydrogen Energy,2009, 34(8) :3476.
  • 10Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. High rates of oxygen reduction over a vapor phase polymeri- zed PEDOT electrode [J].Science, 2008,321(5889) : 671.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部