期刊文献+

基于风功率预测的风电场平滑控制电池容量的需求分析 被引量:4

ANALYSIS ON BATTERY CAPACITY DEMAND FOR WIND FARM SMOOTH CONTROL BASED ON WIND POWER PREDICTION
下载PDF
导出
摘要 基于一典型风电场(2MW)的有功功率输出,采用指数平滑预测法实现了风电场的功率预测。建立以平滑控制为目的的电池储能系统控制策略,实现风电场有功功率平滑输出的仿真研究和电池容量需求分析。研究分析表明:结合风电场预测系统实现功率平滑输出,可大幅减少电池容量需求;预测周期越短,电池容量需求越小,并根据仿真结果,通过非线性拟合得到预测周期与电池容量需求的关系。为了降低电池容量,最后提出一种确定配置电池容量的优化方法,并通过仿真证明了该计算方法的可行性和有效性。 Based on the active power output of a typical wind farm(2MW), the wind power prediction by adopting exponential smoothing forecasting method was presented. Then, control strategies of battery energy storage system (BESS) were established with the aim of smooth control, and simulation research on the active power output of wind farm and battery capacity demand analysis were conducted. The analysis results showed that the realization of smooth power output by adopting wind farm prediction system can reduce the battery capacity demand on a large scale, and the shorter the prediction period is the smaller the battery capacity demand will be. By the basis of the simulation results and the non-linear fitting, the relation between prediction period and battery capacity demand was thus obtained. To decrease the capacity of battery, an optimization method ascertaining the configuration of the capacity of battery was proposed in the end of this paper. The simulation results prove the feasibility and validity of the method.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2013年第3期490-495,共6页 Acta Energiae Solaris Sinica
关键词 风力发电 风功率预测 电池容量 功率平滑 电池储能系统 wind power wind power prediction battery capacity smooth power output battery energy storage system (BESS)
  • 相关文献

参考文献9

  • 1Teleke Sercan, Baran Mt E, Bhattacharya Subhashish, et al. Optima control of battery energy storage for wind farm dispatching[ J ]. IEEE Transactions on Energy Conver- sion, 2010, 25(3) : 787-794.
  • 2屠强.风电功率预测技术的应用现状及运行建议[J].电网与清洁能源,2009,25(10):4-9. 被引量:27
  • 3杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 4Kunisch H J, Kramer K G, Dominik H. Battery energy storage, another option for load frequency control and instantaneous reserve [ J ]. IEEE Transactions on Energy Conversion, 1986, 1(3) : 41——46.
  • 5Anderson M D, Carr D S. Battery energy storage techno- logies [ J ]. Proceedings of the IEEE, 1993, 81 (3) : 475——479.
  • 6Uehara Akie, Senjyu Tomonobu, Kikunaga Yasuaki. Study on optimum operation planning of wind farm/battery system using forecasted power data [ J ]. IEEE Transac- tions on Energy Conversion, 2009, 30(15) : 907 -912.
  • 7徐玖平,胡知能.运筹学——数据·模型·决策[M].北京:科学出版社,2004,307-308.
  • 8张步涵,曾杰,毛承雄,金玉洁,王云玲.电池储能系统在改善并网风电场电能质量和稳定性中的应用[J].电网技术,2006,30(15):54-58. 被引量:228
  • 9Rao Vivek Venkoba, Chellamuthu Chinnagounder. Analy- sis of hybrid power systems [ A ]. AMS' 07 Proceedings of the 1 st Asia International Conference on Modelling & Sim- ulation[ C ], Wasington DC, USA, 2007, 48-52.

二级参考文献37

共引文献824

同被引文献53

  • 1Dong Zhaoyang, Kit Po Wong, Meng Ke, el al. Wind power impact on system operations and planning [A]. Power and Energy Society General Meeting[CJ, Minneapolis, IL, 2010, 1-5.
  • 2Tanabe T, Sato T, Tanikawa R, et al. Generation scheduling for wind power generation by storage battery system and meteorological forecast [A]. Power and Energy Society General Meeting[C], Pittsburgh, USA,2008, 1-7.
  • 3Maciej Swierczynski, Daniel Stroe, Ana- Irina Stan, et al. The Lifetime of the LiFePOdC battery energy storage system when used for smoothing of the wind power plant variations[A]. Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE[C], Vienna, Austria, 2013.
  • 4Saurabh Tewari, Ned Mohan. Value of nas energy storage toward integrating wind: Results from the wind to battery project [J]. IEEE Transactions on Power Systems, 2013, 28(1): 532-541.
  • 5Lawder Matthew T, Suthar Bharatkumar, Northrop Paul W C, et al. Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications [J]. Proceedings of the 1EEE, 2014, 102 (6) : 1014-1030.
  • 6韩涛,卢继平,乔梁,张浩,丁然,赵鑫.大型并网风电场储能容量优化方案[J].电网技术,2010,34(1):169-173. 被引量:108
  • 7李俊芳,张步涵,谢光龙,李妍,毛承雄.基于灰色模型的风速-风电功率预测研究[J].电力系统保护与控制,2010,38(19):151-159. 被引量:94
  • 8严干贵,谢国强,李军徽,王健,朱昱,丁玲.储能系统在电力系统中的应用综述[J].东北电力大学学报,2011,31(3):7-12. 被引量:42
  • 9王成福,李锐,刘辉荣,王超,段录平.光伏发电监控系统的设计与实现[J].电力系统通信,2011,32(6):53-57. 被引量:25
  • 10张野,郭力,贾宏杰,李占鹰,陆志刚.基于电池荷电状态和可变滤波时间常数的储能控制方法[J].电力系统自动化,2012,36(6):34-38. 被引量:119

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部