期刊文献+

能质扩散尾流模型的数值研究

Numerical Study on the Kinetomass Diffusive Wake Model
原文传递
导出
摘要 本文提出一种适用于复杂地形风电场微观选址的风力机尾流模型。研究从湍流平均运动的动能方程出发,通过对非线性项中的速度进行线性化,同时引入能质的概念,得到尾流衰减对应的能质密度满足的对流扩散方程;采用粒子随机运动求解方程得到能质密度,并通过变换将动能衰减叠加到原平均动能场中,得到对应的尾流速度。研究表明,基于能质扩散的风力机尾流模型在平坦地形上与实验数据吻合得较好;对于复杂地形情况,模型通过边界条件将地形信息与浓度方程相耦合,所得尾流速度随着地形起伏而发生变化,且计算量适中,可用于预测复杂地形风电场的流场。 In this paper, a turbine wake model which can be used in the micro-siting problem over complex terrain is developed. Based on the turbulence average kinetic energy equation, the convection-diffusion equation that the kinetomass satisfies is obtained by linearizing the velocity in the nonlinear term and introducing the concept of kinetomass. Kinetomass is obtained through solving the equation by particle randomly walking method. Then add the kinetic deficit to the average kinetic energy, the wake velocity is obtained. The results show that the proposed wake model is in good agreement with the experimental data on flat terrain. For complex terrain, the model contains the terrain information through the boundary condition of the concentration equation. The wake velocity can change according to the shape of the ground. Besides, the total computation is acceptable. Therefore, the proposed wake model can be applied to calculate the flow field over complex terrain.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第4期724-727,共4页 Journal of Engineering Thermophysics
基金 国家高技术研发计划(863计划)(No.2007AA05Z426) 国家国际科技合作专项项目(No.2011DFG13020)
关键词 风力机尾流 能质密度 粒子随机运动 计算流体力学 turbine wake model kinetomass density particle randomly walking method CFD
  • 相关文献

参考文献10

  • 1Uchida T, Ohya Y. Large-Eddy Simulation of Turbulent Airflow Over Complex Terrain [J]. Journal of Wind Engi- neering and Industrial Aerodynamics, 2003, 91:219-229.
  • 2Jimenez A, Crespo A, Migoya E, et al. Advances in Large- Eddy Simulation of a Wind Turbine Wake [J]. Journal of Physics: Conference Series, 2007, 75:12041-12041.
  • 3umenez A, wrespo A, iVllgoya e al. Aavances in Large- ddy Simulation of a Wind Turbine Wake [J]. Journal of ?hysics: Conference Series, 2007, 75:12041-12041.
  • 4N O Jensen. A Note on Wind Generator Interaction [R]. Tech Rep, RisNational Laboratory, DK-4000 Roskilde, Denmark, 1983.
  • 5Katic I, Hcjstrup J, Jensen N O. A Simple Model for Cluster Efficiency [C]//European Wind Energy Associa- tion Conference. Rome: Italy, 1986:407-410.
  • 6Mosetti G, Polomic, Diviaco B. Optimization of Wind Turbine Position in Large Windfarms by Means of a Ge- netic Algorithm [J]. Journal of Wind Engineering and In- dustrial Aerodynamics, 1994, 51(1): 105-116.
  • 7Emami A, P Noghreh. New Approach on Optimization in Placement of Wind Turbines Within Wind Farm by Genetic Algorithms [J]. Renewable Energy, 2010, 35(7): 1559-1564.
  • 8Song M X, Chen K, He Z Y, et al. Wake Flow Model of Wind Turbine Using Particle Simulation [J]. Renewable Energy, 2012, 41:185-190.
  • 9董源,过增元.从热质理论到能质理论[J].工程热物理学报,2012,33(3):465-468. 被引量:4
  • 10Amina E1 Kasmi, Christian Masson. An Extended k-e Model for Turbulent Flow Through Horizontal-Axis Wind hlrbines [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96:103-122.

二级参考文献12

  • 1朱克勤.非牛顿流体力学研究的若干进展[J].力学与实践,2006,28(4):1-8. 被引量:19
  • 2Tanner R I.Engineering Rheology[M].Oxford:Clarendon Press,1985.
  • 3Barnes H A.Hutton J F.Walters K.An Introduction to Rheology[M].New York:Elsevier,1989.
  • 4Monaco G,Cunsolo A,Ruocco G,et al.Viscoelastic Behavior of Water in the Terahertz-Frequency Range:an Inelastic x-Ray Scattering Study[J],Phys Rev E,1999, 60:5505-5521.
  • 5Cimmelli V A.Different Thermodynamic Theories and Different Heat Conduction Laws[J].J Non-Equilib Thermodyn, 2009,34:299-333.
  • 6Joseph D,Preziosi L.Heat Waves[J].Rev Mod Phys, 1989,61:41-73.
  • 7CAO B Y.GUO Z Y.Equation of Motion of a Phonon Gas and Non-Fourier Heat Conduction[J],J Appl Phys, 2007,102(5):53503-53506.
  • 8DONG Y,CAO B Y,GUO Z Y.Generalized Heat Conduction Laws Based on Thermomass Theory and Phonon Hydrodynamics[J].J Appl Phys,2011,110:063504.
  • 9WANG M.GUO Z Y.Understanding of Temperature and Size Dependences of Effective Thermal Conductivity of Nanotubes[J],Phys Lett A,2010,374:4312-4315.
  • 10Kay J M,Nedderman R M.Fluid Mechanics and Transfer Processes[M].Cambridge:Cambridge University Press. 1985:125-130.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部