期刊文献+

约束线性测量误差模型的统计推断 被引量:2

STATISTICAL INFERENCE OF RESTRICTED LINEAR MEASUREMENT ERRORS REGRESSION MODELS
原文传递
导出
摘要 主要讨论线性测量误差模型在约束情况下的检验问题.基于比较原假设与备择假设下模型拟合残差平方和的思想构造了一种新的检验统计量,该检验统计量在原假设下服从加权卡方分布.通过调整,得到了一个渐近零分布为标准卡方分布的检验统计量.最后,通过数值模拟验证了所提推断方法的有效性. This paper considers are measured with additive error testing for linear regression and some additional linear model when covariates restrictions on the coefficients are available. We propose a test statistic based on the difference between the corrected residual sums of squares under the null and alterative hypotheses, and show that its limiting distribution is a weighted sum of independent chi-square distributions. We also develop an adjusted test statistic, which has an asymptotically standard chisquared distribution. Finally, some simulations are given to examine the performance of our procedure and the results are satisfactory.
出处 《系统科学与数学》 CSCD 北大核心 2013年第2期171-178,共8页 Journal of Systems Science and Mathematical Sciences
基金 中央高校基本科研业务费专项资金 中央民族大学自主科研项目(1112KYZYTS44)资助课题
关键词 线性回归模型 测量误差 校正最小二乘估计 约束估计 Linear regression models, measurement errors, corrected least squaresestimation, constrained estimation.
  • 相关文献

参考文献11

  • 1Carroll R J, Ruppert D, Steaanski L A. Measurement Error in Nonlinear Models. New York: Chapman and Hall, 1995.
  • 2Cheng C L, Van Ness J W. StatistieM Regression with Measurement Error. London: Arnold, 1999.
  • 3Fuller W A. Measurement Error Models. New York: Wiley, 1987.
  • 4Toutenburg H. Prior Information in Linear Models. New York: Wiley, 1982.
  • 5Shalabh G G, Misra N. Restricted regression estimation in measurement error models. Compu- tational Statistics and Data Analysis, 2007, 52(2): 1149-1166.
  • 6Shalabh G C, Misra N. Use of prior information in the consistent estimation of regression coeffi- cients in measurement error models. Journal of Multivariate Analysis, 2009, 100(7): 1498-1520.
  • 7Jain K, Singh S, Sharma S. Restricted estimation in multivariate measurement error regression model. Journal of Multivariate Analysis, 2011, 102(2): 264-280.
  • 8Wang Q H, Rao J N K. Empirical likelihood-based inference in linear errors-in-covariables models with validation data. Biometrika, 2002, 89(2): 345-358.
  • 9Rao J N K, Scott A J. The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness of fit and independence in two-way tables. Journal of the American Statistical Association, 1981, 76: 221-230.
  • 10Qin G S, Jing B Y. Empirical likelihood for censored linear regression. Scandinavian Journal of Statistics, 2001, 28(4): 661-673.

同被引文献13

  • 1Carroll R J, Ruppert D, Stefanski L A, et al. Measurement Error in Nonlinear Models (2nd) [M]. NewYork Chapman and Hall, 2006.
  • 2Cheng C L , Van-Ness J W . Statistical Regression With Measure- ment Error[M]. Arnold, London, 1999.
  • 3Durbin J . A Note on Regression When There is Extraneous Informa- tion About One of The Coefficients[J].Journal of The American Statisti- cal Association, 1953,(48).
  • 4Ehsanes A K . Saleh, Shalabh. A Ridge Regression Estimation Ap- proach to The Measurement Error Model[J].Journal of Multivariate Analysis 2014,(123).
  • 5Fuller W A. Measurement Error Models[M]. New York: Wiley,1987.
  • 6Hoel A E , Kennard R W. Ridge Regression: Biased Estimation for Non-Orthognal Problems[J]. Technometrics, 1970.
  • 7Rao C R , Toutenburg H . Shalabh, Heumann C. Inear Models and Generalization: Least Squares and Alternatives[M]. Springer, Berlin, 2008.
  • 8Rasekh A R. Local Influence in Neasurement Error Models with Ridge Estimate[J].Computational Statistics & Data Analysis 2006,(50).
  • 9Shalabh, Garg G, Misra N. Consistent Estimation of Regression Coef- ficients in Ultrastructural Measurement Error model Using Stochastic Prior Information[J].Statistical Papers, 2010,(51).
  • 10Theil H , Goldberger A S. On Pure and Mixed Statistical Estimation in Economics[J]. International Economic Review, 1961, (2).

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部