期刊文献+

NO2在Ag/Pt(110)双金属表面上的吸附和分解 被引量:2

Adsorption and Decomposition of NO_2 on Ag/Pt(110) Bimetallic Surface
下载PDF
导出
摘要 利用俄歇电子能谱(AES)和程序升温脱附谱(TDS)研究了NO2在Ag/Pt(110)双金属表面的吸附和分解.室温下NO2在Ag/Pt(110)双金属表面发生解离吸附,生成NO(ads)和O(ads)表面吸附物种.在升温过程中NO(ads)物种发生脱附或者进一步分解.500K时NO2在Ag/Pt(110)双金属表面发生解离吸附生成O(ads)表面吸附物种.Pt向Ag传递电子,从而削弱Pt-O键的强度,降低O(ads)从Pt表面的并合脱附温度.发现能够形成具有稳定组成的Ag/Pt(110)合金结构,其表现出与Pt(110)-(1×2)相似的解离吸附NO2能力,但与O(ads)的结合明显弱于Pt(110)-(1×2).该AgPt(110)合金结构是可能的低温催化直接分解氮氧化物活性结构. The adsorption and decomposition of NO2 on Ag/Pt(110) bimetallic surfaces have been investigated by Auger electron spectroscopy(AES) and thermal desorption spectroscopy(TDS).At room temperature,NO2 undergoes dissociative chemisorption on Ag/Pt(110) bimetallic surfaces,forming chemisorbed NO(ads) and O(ads).Upon heating,NO(ads) undergoes both desorption from the surface and further decomposition.At 500 K,NO2 chemisorbs dissociatively on Ag/Pt(110) bimetallic surfaces,forming O(ads).Electron transfer occurs from Pt to Ag,therefore,the presence of Ag on Pt(110) surface weakens the binding energy of O(ads) with the surface and decreases the temperature required for the recombinative desorption of O(ads) from the surface.We observed the formation of a Ag/Pt(110) alloy structure that exhibits catalytic activity towards NO2 decomposition similar to that of Pt(110)-(1×2) but with a binding energy towards O(ads) much lower than that of Pt(110)-(1 × 2).Such a Ag/Pt(110) alloy structure may be active in catalyzing the direct decomposition of NO x at relatively low temperatures.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第4期837-842,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(11079033)资助项目~~
关键词 AG Pt(110)双金属表面 二氧化氮 化学吸附 分解 助剂作用 Ag/Pt(110) bimetallic surface NO2 Chemisorption Decomposition Promotion effect
  • 相关文献

参考文献30

  • 1Garin, F.Appl. Catal. A 2001, 222 (1-2), 183. doi: 10.1016/ S0926-860X(01)00827-4.
  • 2Zhdanov, V. E; Kasemo, B. Surf. Sci. Rep. 1997, 29 (2), 31. doi: 10.1016/S0167-5729(97)00009-5.
  • 3Permana, H.; Ng, K. Y. S.; Peden, C. H. F.; Schmieg, S. J.; Lambert, D. K.; Belton, D. N.J. Catal. 1996, 164 (1), 194. doi: 10.1006/jcat. 1996.0375.
  • 4Nakamura, I.; Fujitani, T.; Hamada, H. Surf. Sci. 2002, 514 (1-3), 409. doi: 10.1016/S0039-6028(02)01660-6.
  • 5Brown, W. A.; King, D. A. J. Phys. Chem. B 2000, 104 (12), 2578. doi: 10.1021/jp9930907.
  • 6Ge, Q.; Neurock, M. J. Am. Chem. Soc. 2004, 126(5), 1551. doi: 10.1021/ja036575o.
  • 7Bartram, M. E.; Windham, R. G.; Koel, B. E. Langmuir 1988, 4 (2), 240. doi: 10.1021/1a00080a001.
  • 8Bartram, M. E.; Windham, R. G.; Koel, B. E. Surf. Sci. 1987, 184 (1-2), 57. doi: 10.1016/S0039-6028(87)80272-8.
  • 9Huang, W. X.; White, J. M. Surf. Sci. 2003, 529, 455. doi: 10.1016/S0039-6028(03)00332-7.
  • 10Schwalke, U.; Niehus, H.; Comsa, G. Surf Sci. 1985, 152-153, 596.

二级参考文献22

  • 1Sugai S,Shimizu K,Watanabe H,Miki H,Kawasaki K,Kioka T.Surf Sci,1993,287-288 (Part 1):455.
  • 2Zemlyanov D Y,Smirnov M Y,Gorodetskii V V,Block J H.Surf Sci,1995,329(1-2) (Part 1):61.
  • 3Mieher W D,Pelak R A,Ho W.Surf Sci,1996,359(1-3):23.
  • 4Nyberg C,Uvdal P.Surf Sci,1991,256(1-2):42.
  • 5Iwamoto M,Yahiro H.Catal Today,1994,22(1):5.
  • 6Amirnazmi A,Benson J E,Boudart M.J Catal,1973,30(1):55.
  • 7Ibach H,Lehwald S.Surf Sci,1978,76(1):1.
  • 8Gland J L,Sexton B A.Surf Sci,1980,94(2-3):355.
  • 9Gorte R J,Gland J L.Surf Sci,1981,102(2-3):348.
  • 10Gorte R J,Schmidt L D.Surf Sci,1981,111(2):260.

同被引文献16

  • 1Kong, J.; Franklin, N. R.; Zhou, C.W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622. doi: 10.1126/science.287.5453.622.
  • 2Bao, M.; Chen, Y.; Li, F.; Ma, J.; Lv, T.; Tang, Y.; Chen, L.; Xu, Z.;Wang, T. Nanoscale 2014, 6 (8), 4063. doi: 10.1039/c3nr05268k.
  • 3Shi, J.; Luan, L.; Fang, W.; Zhao, T.; Liu, W.; Cui, D. Sens. Actuator B 2014, 204, 218. doi: 10.1016/j.snb.2014.07.070.
  • 4Wang, X.; Ji, S.;Wang, H.; Yan, D. Sens. Actuators B: Chem. 2011, 160, 115. doi: 10.1016/j.snb.2011.07.021.
  • 5Hernández, S. C.; Jr, J. K.; Lim, J. H.; Mubeen, S.; Hangarter, C. M.; Mulchandani, A.; Myung, N. V. Electroanalysis 2012, 24 (7), 1613. doi: 10.1002/elan.201200135.
  • 6Pochekailov, S.; No?ár, J. Ne?p?rek, S.; Raku?and, J.; Karásková, M. Sens. Actuators B: Chem. 2012, 169 (5), 1.
  • 7Ji, S.;Wang, H.;Wang, T.; Yan, D. A. Adv. Mater. 2013, 25 (12), 1755. doi: 10.1002/adma.v25.12.
  • 8Wang, X.; Ji, S.;Wang, H.; Yan, D. Org. Electron. 2011, 12, 2230. doi: 10.1016/j.orgel.2011.09.014.
  • 9Zou, X.;Wang, B.; Yi qun, W. U.; Chen, Z. M.; Zan, L. I.;Wei, Y. D. Journal of Transducer Technology 2004, 23 (5), 24. doi: 10.13873/j.1000-97892004.05.008.
  • 10Dogo, S.; Germain, J. P.; Maleysson, C.; Pauly, A. Thin Solid Films 1992, 219 (1-2), 244. doi: 10.1016/0040-6090(92)90752-W.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部