摘要
为解决点匹配过程中非刚性形变、位置噪声和出格点等因素导致点匹配不理想的问题,提出一种基于线性规划和相似变换的特征点匹配算法。点匹配被建模成一个能量函数最小化问题。在该函数中,形状上下文特征用于降低点对应关系的歧义性,相似变换用于保持空间映射的连续性,连续松弛问题归结为一个线性规划。仿真结果证实了该算法的有效性。
This paper proposed a linear programming based point matching method with similarity regularization in order to resolve the problems of non-rigid deformation,positional noise and outliers.Point matching was modeled as an energy minimization problem.Shape context was used to reduce the ambiguity of point correspondence,and similarity transform was used to preserve the continuity of spatial mapping.The continuously relaxed optimization problem is reduced to a linear program where optimality can be guaranteed.The simulation results verified the effectiveness of the method.
出处
《计算机应用》
CSCD
北大核心
2013年第4期1115-1118,共4页
journal of Computer Applications
关键词
线性规划
点匹配
对应关系
形状上下文
图像处理
linear programming
point matching
point correspondence
shape context
image processing