期刊文献+

电池系统建模中Butler-Volmer方程的同伦分析求解 被引量:3

Analytical Solution of Butler-Volmer Equation in Battery System Modeling
下载PDF
导出
摘要 Butler-Volmer方程是电化学系统中描述电极动力学过程的本构方程,具有强非线性.为了对这一方程(耦合两个Ohm方程)进行解析求解,在同伦分析方法的框架下,发展了满足简单条件的广义非线性算子的算法,以取代原同伦分析中的非线性算子.该广义非线性算子的构造保证了高阶形变方程的线性特征.这一方法的有效性通过一些算例得到了验证.最后通过同伦分析方法对Butler-Volmer方程进行了求解,结果显示过电位和电流密度的级数解析解与数值解吻合很好,并有很好的收敛效率. Butler-Volmer equation is the constitutive equation to describe the dynamic process of electrode reaction in electrochemical systems. Due to its strong nonlinearity in the mathe- matical form, the computing efficiency by numerical methods was frequently limited. Aiming at solving this equation ( coupled with two Ohm equations) more efficiently, an improved homotopy analysis method(HAM) was presented, in which a generalized nonlinear operator satisfying simple conditions was developed to replace the nonlinear operator in the original homotopy. The construction of generalized nonlinear operator guaranteed the linear property of higher-order deformation equations. The validity of this method was verified through some examples. Furthermore, this method was successfully applied in solving Butler-Volmer equation. The analytical solutions of overpotential and current density agree very well with the numerical solutions and the high efficiency is shown in the computing process.
出处 《应用数学和力学》 CSCD 北大核心 2013年第4期373-382,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10872193)
关键词 Butler-Volmer方程 同伦分析方法 复合函数 强非线性项 广义非线性算子 Butler-Volmer equation homotopy analysis method composite functions strongnonlinearity generalized nonlinear operator
  • 相关文献

参考文献13

  • 1廖世俊.同伦分析方法导论[M].北京:科学出版社,2006.
  • 2Liao S J. A kind of approximate solution technique which does not depend upon small param- eters : an application in fluid mechanics [J]. International Journal of Non-Linear Me- chanics, 1997, 32(5) : 815-822.
  • 3Liao S J. A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infi- uite flat plate[ J]. Journal of Iuid Mechanics, 1999, 385( 1 ) : 101-128.
  • 4Liao S J, Campo A. Analytic solutions of the temperature distribution in Blasins viscous flow problems[ J ]. Journal of aVuid Mechanics, 2002, 453 : 411-425.
  • 5Wang C, Zhu J M, Liao S J, Pop I. On the explicit analytic solution of Cheng-Chang equation [J]. International Journal of Heat and Mass Transfer, 2003, 46(10) : 1855-1860.
  • 6Ayub M, Rasheed A, Hayat T. Exact flow of a third grade fluid past a porous plate using ho- motopy analysis method[J]. International Journal of Engineering Scize, 2003, 41 (18) : 2091-2103.
  • 7Zhu S P. An exact and explicit solution for the valuation of American put options[ J ]. Quan- titative Finance, 2005, 6 (3) : 229-242.
  • 8ZHU Song-ping. A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield[J]. Anziam Journal, 2005, 47(4) : 477-494.
  • 9Wu J, Srinivasan V, Xu J, Wang C Y. Newton-Krylov-multigrid algorithms for battery simula- tion[J]. Journal of the Electrochemical Society, 2002, 149(10) : A1342.
  • 10宋辉.锌电极放电过程数值模拟及Butler-Volmer方程组的解析求解[D].博士论文.合肥:中国科学技术大学,2012.

共引文献3

同被引文献25

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部