期刊文献+

基于改进属性加权的朴素贝叶斯入侵取证研究 被引量:7

Research of intrusion forensics based on improved attribute Weighted Naive Bayes
下载PDF
导出
摘要 针对传统朴素贝叶斯分类模型在入侵取证中存在的特征项冗余问题,以及没有考虑入侵行为所涉及的数据属性间的差别问题,提出一种基于改进的属性加权朴素贝叶斯分类方法。用一种改进的基于特征冗余度的信息增益算法对特征项集进行优化,并在此优化结果的基础上,提取出其中的特征冗余度判别函数作为权值引入贝叶斯分类算法中,对不同的条件属性赋予不同的权值。经实验验证,该算法能有效地选择特征向量,降低分类干扰,提高检测精度。 Traditional Naive Bayes classification exists the issues of feature redundancy in intrusion forensics and neglects the difference between data attributes in different intrusion actions. For these issues, an improved Weighted Naive Bayes classification method by setting attribute weights is proposed. A new Information Gain algorithm based on feature redundancy is used to opti- mize the set of feature, then the discriminant of feature redundancy extracted as weights is introduced to Bayes classification algorithm based on this optimization results. The different condition attributes are weighted differently. The experimental results show that the new algorithm can effectively select features, reduce classification interference and improve detection accuracy.
出处 《计算机工程与应用》 CSCD 2013年第7期81-84,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60873247) 山东省自然科学基金(No.ZR2009GZ007) 山东省高新技术自主创新工程(No.2008ZZ28) 山东省教育厅科技计划项目(No.J09LG52)
关键词 入侵取证 朴素贝叶斯 加权朴素贝叶斯 信息增益 特征冗余度 属性加权 intrusion forensics Naive Bayes Weighted Naive Baye Information Gain feature redundancy attribute weighted
  • 相关文献

参考文献9

  • 1Harry Z, Sheng S L.Learning Weighted Naive Bayes with accurate ranking[C]//Proceedings of the 4th IEEE Interna- tional Conference on Data Mining(ICDM 04),Brighton,UK, 2004 : 567-570.
  • 2令狐红英,陈梅.王翰虎,等.基于互信息可信度的叭叶斯网络入侵检测研究[J].计算机工程与没计,2009,30(14):38-40.
  • 3何慧,苏一丹,覃华.基于信息增益的贝叶斯入侵检测模型优化的研究[J].计算机工程与科学,2006,28(6):38-40. 被引量:10
  • 4邓维斌,王国胤,王燕.基于Rough Set的加权朴素贝叶斯分类算法[J].计算机科学,2007,34(2):204-206. 被引量:43
  • 5Bagliomi M, Furletti B,Turini F.DrC4.5: improving C4.5 by means of prior knowledge[C]//Proceedings of the ACM Symposium on Applied Computing.Santa Fe: ACM Press, 2005 : 474-481.
  • 6Hall M A.Correlation-based feature selection for discrete and numeric classmachine learning[C]//Proceedings of the 17th International Conference on Machine Learning.San Francisco: Morgan Kaufmann Publishers, 2000 : 359-366.
  • 7秦锋,任诗流,程泽凯,罗慧.基于属性加权的朴素贝叶斯分类算法[J].计算机工程与应用,2008,44(6):107-109. 被引量:48
  • 8Information and Computer Science University of California. Irving KDD cup 1999 data[EB/OL].[2010-09-20].http://kdd. ics.uci.edu/databases/kddcup99/kddcup99.html.
  • 9肖立中,刘云翔.适合于入侵检测的分步特征选择算法[J].计算机工程与应用,2010,46(11):81-84. 被引量:5

二级参考文献37

共引文献93

同被引文献65

  • 1何慧,苏一丹,覃华.基于信息增益的贝叶斯入侵检测模型优化的研究[J].计算机工程与科学,2006,28(6):38-40. 被引量:10
  • 2程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 3邓维斌,王国胤,王燕.基于Rough Set的加权朴素贝叶斯分类算法[J].计算机科学,2007,34(2):204-206. 被引量:43
  • 4HAN J W,KAMBER M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2000.
  • 5Jiang L X,Zhang H , Cai Z H. A novel bayes model :hid- den naYve bayes [ J ]. IEEE Transactions on Knowledge and Data Engineering(TKDE) ,2009, 21 (10) : 1361-1371.
  • 6Harry Z, Sheng S L. Learning weighted naive bays with ac- curate ranking[ C]//Proceedings of the 4th IEEE Interna- tional Conference on Data Mining (ICDM 04), Brighton, UK: [s. n. ] , 2004:567-570.
  • 7Yager R. An extension of the naive Bayesian classifier[ J]. Information Sciences,2006, 176 (5) : 577- 588.
  • 8University of California, Irvine. UCI Machine Learning Repository [ DB/OL ]. [ 2014-12-05 ]. http: //archive. ics. uci. edu/ml/.
  • 9Yang Li, Li Guo. An active learning based TCM-KNN algorithm for su- pervised network intrusion detection[ J]. Computers & Security,2007, 26(7) :459 -467.
  • 10Levent Koc ,Thomas A Mazzuehi, Shahram Sarkani. A network intrusion detection system based on a Hidden Na've Bayes multiclass classifier [ J]- Expert Systems with Applications,2012,39 (18) : 13492 - 13500.

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部