期刊文献+

基于改进贝叶斯决策的邮件过滤 被引量:2

Improved probability-based Bayesian anti-spam mechanism
下载PDF
导出
摘要 探讨了基于概率阈值的贝叶斯邮件过滤模型的局限性:由于很少考虑所设定阈值的适用性和实用性,损失了一定的召回率。改进贝叶斯决策,提出了基于随机变量的较小错误分类决策方法;针对邮件处理的特殊性,进一步提出了基于随机变量的较小风险分类决策方法。实验结果表明,处理普通文本分类问题时,前者的分类决策效果更好;而后者在处理邮件问题时性能更优,能够在保持较小误判风险的同时,提高贝叶斯邮件过滤器的召回率以及F值。 This paper confers in depth to the limitations of the traditional Bayesian anti-spam mechanism. It seldom thinks about whether the threshold is suitable or not, so the recalling is reduced. Aiming at this question, the paper proposes a lower-error policy decision based on chance variable; and considering the particularity of email classification, a lower-risk policy decision based on chance variable is proposed. The experimental results show that the former one maybe a better way to classify the common text; and the latter one makes better performance on recalling and F value when dealing with emails, at the same time it keeps a lower risk of error judging.
作者 薛正元
出处 《计算机工程与应用》 CSCD 2013年第7期98-101,125,共5页 Computer Engineering and Applications
关键词 垃圾邮件 邮件过滤 概率 阈值 分类决策 spam email email filter probability threshold classify decision
  • 相关文献

参考文献13

二级参考文献106

共引文献212

同被引文献19

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部