期刊文献+

HSV色彩空间的Retinex结构光图像增强算法 被引量:74

Structured Light Image Enhancement Algorithm Based on Retinex in HSV Color Space
下载PDF
导出
摘要 在结构光几何重建中,由于拍摄方式和场景照明情况的复杂多变,使得产生的图像可能会因为光线的亮暗不均造成图像细节的缺失.为此,提出一种基于HSV色彩空间变换的带颜色恢复Retinex算法和色彩饱和度校正策略.针对颜色保持的需要,首先将传统RGB空间上的多尺度Retinex算法转换到HSV颜色空间;然后通过分析HSV颜色空间模型来增强模型中的V分量,同时利用相关系数使S分量随着V分量的增强进行自适应调整;最后将HSV模型转换到RGB空间,使增强后的图像颜色得到保持.实验结果表明,该算法应用于结构光条纹图像的增强中将使结构光图像在颜色得到保持的同时细节信息也得到了增强,更利于后续条纹信息的提取及自动编码. In structured light geometry reconstruction, as the projecting modes and lighting conditions are complex and changeful, detail information in dark areas are usually lost in the result images. An improved Retinex algorithm are proposed based on HSV color space with color restoration and color saturation correction strategy. According to the requirement of color retain, the algorithm includes following steps. Firstly, an input color image is converted from RGB color space into HSV color space. Then the traditional multi-scale Retinex algorithm is applied only to V-component through the analysis of HSV color space model. At the same time, the coefficient of correlation is used to adaptively adjust the S-component base in the enhancement of V-component. Finally by transforming HSI model into RGB model, the enhanced color image with color restoration is obtained. Experimental results show that, the algorithm used in structured light stripe image enhancement, the color of the structured light image is maintained and the detail information is enhanced very well, which is more favorable to follow-up stripe information extraction and automatic coding.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第4期488-493,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61075118) 浙江省自然科学基金(Y1080436)
关键词 RETINEX 颜色保持 图像增强 HSV色彩空间 Retinex color maintain image enhancement HSV color space
  • 相关文献

参考文献14

  • 1Forsyth D. A novel algorithm for colour constancy [J]. International Journal of Computer Vision, 1990, 5(1) : 5-35.
  • 2Land E H. The Retinex theory of color vision[J]. Scientific American. 1977, 237(6).. 108-128.
  • 3MeCann J. Lessons learned from Mondrians applied to real images and color gamuts [C] //Proceedings of the IS&T/SID 7th Color Imaging Conference: Color Science, Systems and Applications. Seottsdale: The Society for Imaging, 1999:1-8.
  • 4Funt B, Ciurea F, MeCann J. Retinex in Matlab [C] // Proceedings of the IS&T/SID 8th Color Imaging Conference: Color Science, Systems and Applications. Scottsdale: The Society for Imaging Science and Technology, 2000:112-121.
  • 5Ciurea F, Funt B. Tuning Retinex parameters [J].Journal of Electronic Imaging, 2004, 13(1): 58-64.
  • 6Kimmel R. Elad M, Shaked D, et al. A variational framework for Retinex [J]. International .Journal of Computer Vision, 2003, 52(1): 7-23.
  • 7Li T, Asari V. Modified luminance based MSR for fast and efficient image enhancement [C] //Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop. Los Alamitos: IEEE Computer Society Press. 2003: 174-179.
  • 8Rahman Z, Jobson D J. Woodell G A. Multi scale Retinex for color image enhancement [C] //Proceedings of IEEE International Conference on Image Processing.Los Alamitos:IEEE Computer Society Press. 1996, 3:1003-1006.
  • 9江兴方,王戈,沈为民.一种色彩改进型Retinex彩色图像增强方法[J].光电子.激光,2008,19(10):1402-1404. 被引量:11
  • 10杨万挺,汪荣贵,方帅,张璇.滤波器可变的Retinex雾天图像增强算法[J].计算机辅助设计与图形学学报,2010,22(6):965-971. 被引量:43

二级参考文献41

共引文献97

同被引文献576

引证文献74

二级引证文献443

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部