期刊文献+

基于BP神经网络的转炉炼钢吹氧量预测 被引量:10

Prediction of oxyen blow rate in BP neural network based converter refining
原文传递
导出
摘要 针对转炉的动态吹炼过程,建立了基于BP神经网络的转炉炼钢总吹氧量预测模型和二次吹氧量预测模型。通过相关性分析确定影响转炉总吹氧量和二次吹氧量预测的主要因素;利用五数概括法筛选数据;采用LM优化算法改进BP神经网络。并利用历史生产数据对不同拓扑结构的神经网络模型进行了训练和比较,确定了最优网络结构模型,对模型的性能进行了评价,总吹氧量预测模型预测误差小于800 m3的命中率达到87.88%,二次吹氧量预测模型预测误差小于400 m3的命中率为91.99%。 In light of the dynamic blowing process of converter a BP neural network based prediction model is proposed for the purpose of determination of total blow oxygen and end blow oxygen in converter steel-making. Critical influence factors for total blow oxygen and end blow oxygen prediction can be determined by correlation analysis. Fivenumber summary method is used to discriminate the data. BP neural network is improved by LM algorithm. Then, several neural network models with different topology structure are trained and compared with the history data,and the best network topology is selected. The performance of the best neural network model is evaluated. The results show that the hit rate to total blow oxygen predicted by model is 87. 88 % with control precision among 800 m3, and the hit rate to end blow oxygen predicted by model is 91.99 % with control precision among 400m3 respectively.
出处 《炼钢》 CAS 北大核心 2013年第2期34-37,41,共5页 Steelmaking
关键词 转炉 BP神经网络 吹氧量 预测 converter BP neural network blow oxygen prediction
  • 相关文献

参考文献5

  • 1王建辉,徐林,方晓柯,顾树生.基于一类GA-RBF神经网络的转炉炼钢静态模型控制[J].东南大学学报(自然科学版),2005,35(A02):90-94. 被引量:5
  • 2Frattini Filetia A M, Pacianotto T A, Pitasse Cunha A. Neural modeling helps the BOS prgcess to achieve aimed end-point[J]. Engineering Applications of Artificial Intelli- gence. 2006,19(1 ) : 9-17.
  • 3Han Min,Wang Xinzhe. Case based reasoning for converter steelmaking dynamic oxygen volume control[C]// Interna- tional Conference on Intelligent Control and Information Processing. Dalian, 2010: 398-401.
  • 4Hagan M T, Menhaj M. Training feedforward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks, 1994,5 (6) : 989-993.
  • 5赵慧,甘仲惟,肖明.多变量统计数据中异常值检验方法的探讨[J].华中师范大学学报(自然科学版),2003,37(2):133-137. 被引量:24

二级参考文献16

  • 1吴传义.异常数据的统计发现[J].数理统计与管理,1984,3(2):20-24. 被引量:8
  • 2David C 陈忠链(译).探索性数据分析[M].北京:中国统计出版社,1998..
  • 3Weisberg S 王静龙译.应用线性回归[M].北京:中国统计出版社,1998..
  • 4Huber P J. Robust Statistics[M]. New York, John Wileyand Sons Ine, 1981.
  • 5Wetherill G B. Regression Analysis with Applications[M].London : Chapman and Hall, 1986.
  • 6陶澍.应用数理统计方法[M].北京:中国环境科学出版社,1995.80-100.
  • 7朱宏.用样本分位数方法同时检测正态样本多个异常值[J].数理统计与应用概率,1989,(4):27-29.
  • 8Tao J,Wang X. Intelligent control method and application for BOF steelmaking process[A]. In: Proceedings of the IFAC World Congress [C]. 2002.439-444.
  • 9Tao J,Qian W D.Intelligent method for BOF endpoint [P] & [Mn] estimation[A]. In: Proceedings of the IFAC Workshop on New Technologies for Automation of Metallurgical Industry[C]. 2003. 77 - 82.
  • 10Hint K J, Hass R, Murray-Smith R. Extending the functional equivalence of radial basis function networks and fuzzy inference systems[J]. IEEE Trans on Neural Networks, 1996,7(3) :776- 781.

共引文献27

同被引文献118

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部