期刊文献+

基于遗传退火算法的无人机航路规划 被引量:7

Simulation of Genetic Annealing Algorithm for Route Planning of Unmanned Aerial Vehicle
下载PDF
导出
摘要 文章研究无人机航路规划问题;无人机航路规划问题约束条件较多,且对计算实时性要求较高,传统的优化方法不能很好满足实时性的要求,遗传算法计算速度较快,但局部搜索能力不强,在求解具有复杂约束条件的航路规划问题时容易陷入局部最优;为此提出一种求解航路规划问题的改进遗传算法,算法将遗传算法和模拟退火算法相结合,利用模拟退火算法增强了算法的局部搜索能力,改善了遗传算法易早熟的缺点;最后利用改进算法对无人机航路规划进行仿真,仿真结果表明该算法能避免陷入局部最优,具有较快收敛速度,航路规划质量较高。 This paper studied on route planning of Unmanned Aerial Vehicle (UAV). UAV Route Planning included many constraints, and required a higher real time computing, traditional optimization methods can't meet the realmtime requirements, the genetic algorithm (GA) was faster, but the local search ability wasn't strong, so that GA was easy to fall into local optimal when solved to route planning with complex constraints. So this paper proposed an improved genetic algorithm for route planning problem. By combining GA and simulated an nealing algorithm (SA), the algorithm used SA to enhance the ability of local search algorithm to improve GA precocious shortcomings. Fi- nally, the improved algorithm for route planning is simulated, and the results show that this algorithm can avoid being trapped in local opti- mum, convergence speed and route quality are improved.
作者 华珊珊
出处 《计算机测量与控制》 北大核心 2013年第3期712-715,共4页 Computer Measurement &Control
关键词 遗传退火算法 航路规划 无人机 genetic annealing algorithm route planning UAV
  • 相关文献

参考文献7

二级参考文献56

  • 1周成平,陈前洋,秦筱楲.基于稀疏A*算法的三维航迹并行规划算法[J].华中科技大学学报(自然科学版),2005,33(5):42-45. 被引量:38
  • 2杜萍,杨春,赵东平.基于威胁网的飞行器航迹快速搜索算法[J].飞行力学,2005,23(3):41-44. 被引量:8
  • 3肖秦琨,高晓光.基于空间改进型Voronoi图的路径规划研究[J].自然科学进展,2006,16(2):232-237. 被引量:9
  • 4冯玉.TF/TA轨迹规划算法研究及实现[D].西安:西北工业大学,2002.
  • 5DED K.Optimization for engineering design:Algorithms and examples[M].New Delhi:Prentice-Hall,1995.
  • 6NIKOLOS I K,VALAVANIS K P,TSOURVELOUDIS N C.Evolutionary algorithm based offline/online path planner for UAV navigation[J].IEEE Transactions on Systems,Man and Cybernetics,2003,33(6):898-912.
  • 7DORIGO M,STUTZLE T.Ant conlony optimization[M].The MIT Press,2004.
  • 8Fu Xi, Gao Xu, Chen Dong. A bayesian optimization algorithm for UAV path planning[C]//International Federation for Information Processing. Boston: Springer, 2005:227-232.
  • 9Henrik G. Autopilot design and path planning for a UAV [ R ]. Swedish: Defense Research Agency, 2006:1-44.
  • 10Root Philip J. Collaborative UAV path planning with deceptive strategies [D]. Boston: Massachusetts In- stitute of Technology, 2005.

共引文献108

同被引文献54

引证文献7

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部