期刊文献+

基于混沌遗传的智能吸尘器避障研究 被引量:5

Study on Obstacle Avoidance of Intelligent Vacuum Cleaner Based on Chaos Genetic
下载PDF
导出
摘要 智能吸尘器工作在陈设与障碍物较为复杂的非结构性的室内环境中,障碍物的形状与底部距地面的间隙差别较大,智能吸尘器经常在避障清扫中出现卡死的现象;提出基于混沌遗传的智能吸尘器避障方法,设计了多传感器互相协和工作的机器人避障系统,使用超声波传感器对障碍物的距离进行测量,红外传感器进行障碍物是否存在的判断,将传感器的信息简化成一维编码,采用混沌遗传的方法对吸尘器的避障策略进行软件设计;实际的吸尘器测试证明,可以有效避开不同形状与不用高度的障碍物,系统具有良好的稳定性与鲁棒性。 Intelligent vacuum cleaner works on display and obstacles of complex non structured indoor environment, the shape of obstacle and the bottom of the gap from the ground vary greatly, often in obstacle avoidance of intelligent vacuum cleaner cleaning of deadlocking phe- nomenon. Based on the chaotic genetic method of obstacle avoidance for intelligent vacuum cleaner, a sensor mutual union work robot obsta- cle avoidance system, the use of ultrasonic sensors for obstacle distance measurement, infrared sensors for obstacle to judge if there, the sen- sor information is simplified into one--dimensional coding, using chaos genetic method for vacuum cleaner obstacle avoidance strategy for software design. The actual cleaner test proof, can effectively avoid the different shape and not high obstacle, the system has good stability and robustness.
作者 杜隆胤
出处 《计算机测量与控制》 北大核心 2013年第3期762-765,共4页 Computer Measurement &Control
关键词 智能吸尘器 避障系统 超声波 红外传感器 混沌遗传 intelligent vacuum cleaner obstacle avoidance system ultrasound infrared sensor chaos genetic
  • 相关文献

参考文献5

二级参考文献32

  • 1孟庆春,齐勇,张淑军,杜春侠,殷波,高云.智能机器人及其发展[J].中国海洋大学学报(自然科学版),2004,34(5):831-838. 被引量:59
  • 2高建平,方鹏程,胡征峰,刘银.基于多传感器信息融合的移动机器人导航系统的设计与实现[J].计算机测量与控制,2004,12(10):983-986. 被引量:6
  • 3王仲民,岳宏,刘继岩.移动机器人多传感器信息融合技术述评[J].传感器技术,2005,24(4):5-7. 被引量:18
  • 4蒋新松.未来机器人技术发展方向的探讨[J].机器人,1996,18(5):285-291. 被引量:45
  • 5胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2001..
  • 6Qing Fang, Feng Zhao. Lightweight sensing and communication protocols for target enumeration and aggregation [ C ]. Proc 4th ACM MOBIHOC, 2003. 165 - 176.
  • 7Yan Guo, Bei Hua. Energy- based Target Numeration in wireless sensor networks [ C ]. Proceedings of 2007 International Workshop on Wireless Ah Hoc, Mesh and Sensor Networks (WAMSNet - 07 ) , Seoul, Korea, Dec. 6 - 8, 2007.
  • 8N Shrivastava, R Mudumbai, U Madhow, S Suri. Target tracking with binary proximity sensors: fundamental limits, minimal descriptions and algorithms [ C ]. ACM Sensys, November 1 - 3, 2006.
  • 9Feng Zhao, Jie Liu, Juan Liu. Collaborative signal and information processing: an information directed approach [ C ]. Proceedings of the IEEE, 2003,91 (8) :1199 - 1209.
  • 10J J Liu, J Reich, Feng Zhao. Collaborative in - network processing for target tracking [ J ]. Journal of applied signal processing, 2003, (4) : 378 -391.

共引文献38

同被引文献27

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部