期刊文献+

Synthesis and characterization of manganese doped CeO_2 nanopowders from hydrolysis and oxidation of Ce_(37)Mn_(18)C_(45) 被引量:2

Synthesis and characterization of manganese doped CeO_2 nanopowders from hydrolysis and oxidation of Ce_(37)Mn_(18)C_(45)
原文传递
导出
摘要 The Mn-doped Ce02 nanopowders with high catalysis activity were successfully fabricated through a simple hydrolyzed-oxidized approach. Firstly, the alloy Ce37Mnl 8C45 was prepared in vacuum induction melting furnace. Subsequently, Mn-doped CeO2 nanopowders with 142 m2/g of specific surface area were obtained through a simple hydrolyzed-oxidized procedure of the alloy Those nanopowders were heat treated at different temperatures. The obtained materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS). And the catalytic activity on vinyl chloride (VC) emission combustion was investigated. The results showed that those nanopowders after hydrolyzed-oxidized from Ce37Mn18C45 mainly consisted of CeO2 and Mn304. Manganese element increased the thermal stability of CeO2 nanopowders. The Mn-doped CeO2 nanopowders had three morphologies. Small particles were Mn-doped CeO2, square particles were Mn304 and the rods were Mn304 and Mn203. The Mn-doped CeO2 nanopowders had good vinyl chloride (VC) emission catalytic performance. The Mn-doped Ce02 nanopowders with high catalysis activity were successfully fabricated through a simple hydrolyzed-oxidized approach. Firstly, the alloy Ce37Mnl 8C45 was prepared in vacuum induction melting furnace. Subsequently, Mn-doped CeO2 nanopowders with 142 m2/g of specific surface area were obtained through a simple hydrolyzed-oxidized procedure of the alloy Those nanopowders were heat treated at different temperatures. The obtained materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS). And the catalytic activity on vinyl chloride (VC) emission combustion was investigated. The results showed that those nanopowders after hydrolyzed-oxidized from Ce37Mn18C45 mainly consisted of CeO2 and Mn304. Manganese element increased the thermal stability of CeO2 nanopowders. The Mn-doped CeO2 nanopowders had three morphologies. Small particles were Mn-doped CeO2, square particles were Mn304 and the rods were Mn304 and Mn203. The Mn-doped CeO2 nanopowders had good vinyl chloride (VC) emission catalytic performance.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第3期271-275,共5页 稀土学报(英文版)
基金 Project supported by Shanghai Leading Academic Discipline Project (S30107)
关键词 cerium manganese carbide Mn-doped CeO2 nanopowders hydrolyzed-oxidized VC catalytic performance rare earths cerium manganese carbide Mn-doped CeO2 nanopowders hydrolyzed-oxidized VC catalytic performance rare earths
  • 相关文献

参考文献6

二级参考文献110

共引文献83

同被引文献5

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部