期刊文献+

天冬氨酸-谷氨酸共聚物的生物降解性及毒性研究 被引量:1

Biodegradability and toxicity of aspartic acid-glumic acid copolymer
原文传递
导出
摘要 目的探讨聚天冬氨酸新型改性产品天冬氨酸-谷氨酸共聚物(PAG)的生物降解性及毒性。方法取受纳水体的水为接种水,采用CO2法对浓度为98.8 mg/L PAG的可生物降解性进行研究;观察PAG灌胃染毒对SPF级昆明小鼠的急性毒性和骨髓嗜多染红细胞微核率;以5、1、0.2、0.04和0.008 mg/皿的剂量进行PAG对TA97、TA98、TA100、TA102菌株的Ames试验;观察100、500和1 000 mg/L浓度PAG对小麦及大豆种子发芽率的影响。结果 PAG的10 d和28 d生物降解率分别为34%和79%,属于易生物降解物质;小鼠经口半致死量(LD50)大于10 000 mg/kg;Ames试验结果呈阴性;PAG对植物生长发育无明显不良影响。结论 PAG为实际无毒且非致突变性的安全化学品。 Objective To explore the biodegradability and toxicity of aspartic acid-glutamic acid eopolymer (PAG). Methods Surface water sample was collected as inoculated water, methods of CO2 test was carried out for the biodegradability. Acute toxicity test and micronucleus test on mouse hone marrow polychromatic erythrocytes for PAG(98.8 mg/L) were carried out by gavage.PAG was dissolved in DMSO (5, 1, 0.2, 0.04和 0.008 mg per plate) and negative and positive control group were designed for Ames test. Impact of PAG on germinating percentage was discussed. Results The 10-day and 28-day biodegradation rates of PAG were 34% and 79% and it was easily biodegradable substance. The oral LD50 of PAG for mice was higher than 10 000 mg/kg. The mutagenieity test result was negative. PAG had no significant adverse effects on plant growth and development. Conclusion PAG is an actually nontoxic and non-mutagenic chemical.
出处 《环境与健康杂志》 CAS CSCD 北大核心 2013年第3期211-213,共3页 Journal of Environment and Health
基金 国家863计划项目(2006AA06Z309) 河北省自然科学基金(E2012502005) 教育部中央高校基本科研业务费专项资金(10QG02)
关键词 天冬氨酸-谷氨酸共聚物 可生物降解性 急性毒性 致突变性 Aspartie acid-glutamic acid eopolymer(PAG) Biodegradability Acute toxicity Mutagenicity
  • 相关文献

参考文献9

二级参考文献104

共引文献70

同被引文献20

  • 1黄金,陈宁收.γ-聚谷氨酸的性质与生产方法[J].氨基酸和生物资源,2004,26(4):44-48. 被引量:31
  • 2陈琼婵,张冰如,李风亭.聚天冬氨酸与其它阻垢分散剂的协同效应[J].工业用水与废水,2006,37(2):69-72. 被引量:13
  • 3程志辉,黄君礼,张玉玲,于小英,杨士林.天冬氨酸/谷氨酸共聚物的阻垢性能研究[J].南京理工大学学报,2007,31(2):248-251. 被引量:10
  • 4Quraishi M A,Singh A,Singh V K.Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigiileaves[J].Materials Chemistry and Physics,2010,122(1):114-122.
  • 5Ghareba S,Omanovic S.Interaction of 12-aminododecanoic acid with a carbon steel surface:Towards the development of'green'corrosion inhibitors[J].Corrosion Science,2010,52(6):2104-2113.
  • 6Zahid A,Koutsoukos P G.Evaluation of maleic acid based polymers as scale inhibitors and dispersants for industrial water applications[J].Desalination,2014,335(1):55-63.
  • 7Marie C,Ermane P,Gelus D,et al.State of art of natural inhibitors of calcium carbonate scaling A review article[J].Desalination,2015,356(2):47-55.
  • 8Sun Y,Xiang W,Wang Y.Study on polyepoxysuccinic acid reverse osmosis scale inhibitor[J].Environ Sci Suppl,2009,43(5):73-75.
  • 9Shi W,Ding Y C,Yan J L,et al.Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces[J].Desalination,2012,291:8-14.
  • 10Manoli F,Dalas E.Calcium carbonate crystallization in the presence of glutamic acid[J].Cryst Growth,2001,222(1-2):293-297.

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部