期刊文献+

不同路线合成乙醇的热力学分析(英文) 被引量:3

Thermodynamic analysis of differentroutes of ethanol synthesis
原文传递
导出
摘要 运用吉布斯自由能最小法对3种不同路线(合成气直接合成、甲醇同系化、醋酸加氢)合成乙醇热力学进行了分析,在温度373 K~873 K,压力0.1 MPa~10 MPa的范围内获得了各路线原料转化率与产物平衡组成随温度与压力变化的关系。对于合成气直接合成乙醇,低温对CO平衡转化率有利,在压力为2 MPa时,温度从373 K升高到873 K,CO平衡转化率从100%降到1.56%:在甲醇同系化合成乙醇工艺中,甲醇的转化率在所研究的温度压力范围内都几乎为100%,低温时(T<473 K)甲醇经同系化反应接近完全转化为乙醇,高温时(7>673 K)甲醇几乎全部分解为CO与H_2;醋酸加氢制乙醇工艺中醋酸的转化率均大于70.79%。对于这3种路线,乙醇的平衡组成在10MPa、373K时达到最大,分别为50%,50%与25%。 Thermodynamic analysis of ethanol (EtOH) synthesis using the Gibbs free energy minimization method for three routes(namely, direct synthesis from syngas, methanol homologation and hydrogenation of acetic acid (HAC)) have been performed in the range of (373- 873) K and (0.1-10) MPa in this study. The conversion of key feedstock and product equilibrium composition are obtained as a function of temperature and pressure. For direct synthesis of ethanol, low temperature favors the CO equilibrium conversion. CO conversion would changes from 100% to 1.56% with increasing temperature from 373 K to 873 K at 2 MPa. For the process from methanol homologation, nearly 100% methanol conversion could be gained at all temperatures and pressures. Methanol would be nearly converted into ethanol via homologation reaction at lower temperature (T〈473 K) and almost decomposed into CO and H2 at higher temperature(T〉673 K). HAC conversion can reach higher value (〉70.79%) under the conditions studied for HAC hydrogenation. The maximum ethanol equilibrium content was 50 %, 50 % and 20 % respectively for the above three routes at T=373 K, P=10 MPa.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2013年第3期256-260,共5页 Computers and Applied Chemistry
基金 Supported by State science and technology support program(No.2006BAE02B02)~~
关键词 热力学分析 乙醇 合成气合成 甲醇同系化 醋酸加氢 thermodynamic analysis, ethanol, synthesis from syngas, methanol homologation, hydrogenation of acetic acid
  • 相关文献

参考文献11

  • 1Qiu H G, Huang J K and Yang J. Bioethanol development in China and the potential impacts on its agricultural economy. Applied Energy, 2010, 87(1):76-83.
  • 2Balat M and Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 2009, 86(11):2273- 2282.
  • 3He J and Zhang W N. Research on ethanol synthesis from syngas. Journal of Zhejiang University Science A, 2008, 9(5):714-719.
  • 4He J and Zhang W N. Techno-economic evaluation of thermo-ehemical biomass-to-ethanol. Applied Energy, 2011, 88(4): 1224-1232.
  • 5Subramani V and Gangwal S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy and Fuels, 2008, 22(2):814-839.
  • 6Luo N J, Cao F H, Zhao X, Xiao T C and Fang D Y. Thermodynamicanalysis of aqueous-reforming of polylols for hydrogen generation. Fuel, 2007, 86(12-13):1727-1736.
  • 7Mawson S, McCutchen M S, Phooi K L and George W R. Thermodynamics of higher alcohol synthesis. Energy and Fuels, 1993, 7(2):257-267.
  • 8Zhang H B, Dong X and Li G D. Carbon nanotube-promoted Co-Cu catalyst for highly efficient synthesis of higher alcohols from syngas. Chemical Communications, 2005, 40:5094-5096.
  • 9Liu Y, Murata K and Inaba M. Synthesis of ethanol from syngas over Rh/Ce 1-xZrxO2 catalysts. Catalysis Today, 2011, 164(1):308- 314.
  • 10Xiao H C, Li D B, Li W H and Sun Y H. Study of induction period over K2CO3/MoS2 catalyst for higher alcohols synthesis. Fuel Processing Technology, 2010, 91(4):383-387.

同被引文献24

  • 1王科,李扬,范鑫,胡玉容,袁小金,许红云.乙酸酯化加氢制乙醇技术开发与经济性分析[J].化工进展,2012,31(S1):304-305. 被引量:13
  • 2凌泽济.环氧乙烷合成反应器数学模拟[J].江苏化工,2005,33(5):54-57. 被引量:1
  • 3熊玮,毕学工,周国凡.高炉下部气相压降特性的模拟研究[J].高校化学工程学报,2007,21(2):233-238. 被引量:6
  • 4T. Turek,D. L. Trimm,N. W. Cant.The Catalytic Hydrogenolysis of Esters to Alcohols[J]. Catalysis Reviews . 1994 (4)
  • 5Phillips J, Clausen E, Gaddy J. Biological production of ethanol from coal synthesis gas [J]. Applied Biochemical Biotechnology, 1993, 40 (1): 559-571.
  • 6Johnston V, Chapman J, Chen L. Ethanol production from acetic acid utilizing a cobalt catalyst [P]: US, 7608744. 2009.
  • 7Wollrab R, Johnston V, Warner R. Process for producing ethanol by hydrogenation of acetic acid [P]: WO, 2011140468. 2011.
  • 8Johnston V, Kimmich B, Waal J. Ethanol production from acetic acid utilizing a molybdenum carbide catalyst [P]: US, 8350098.2013.
  • 9Roger F, Sven L. Solving mathematical programs with complementarity constraints as nonlinear programs [J]. Optimization Methods and Software, 2004, 19 (1): 15-40.
  • 10田宜水,赵立欣.我国燃料乙醇原料可持续供应初步分析[J].中国能源,2007,29(12):26-29. 被引量:15

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部