期刊文献+

基于眼睛和嘴巴状态的驾驶员疲劳检测算法 被引量:17

DRIVER FATIGUE DETECTION ALGORITHM BASED ON THE STATES OF EYES AND MOUTH
下载PDF
导出
摘要 针对列车驾驶员疲劳检测问题,提出一种基于人眼和嘴巴状态的驾驶员疲劳检测算法。首先采用改进的AdaBoost算法精确定位驾驶员脸部区域。然后通过模板匹配定位人眼,并根据人脸的几何特征定位嘴巴。最后计算每一帧图像的PERCLOS(per-cent eyelid closure)参数和嘴部动作频率,统计单位时间内双参数与对应阈值的关系,作为判断驾驶疲劳的依据。实验结果表明,在正常光照下,综合眼睛和嘴部信息,比采用单参数检测算法减少了误判、漏判的概率,具有较高的准确性和鲁棒性。 Aiming at the problems of train drivers fatigue detection,we propose a fatigue detection algorithm which is based on the states of eyes and mouth of drivers.First,the improved AdaBoost algorithm is used to accurately locate the face area of drivers,then the human eyes are located through template matching,and the mouth is positioned according to the geometrical characteristics of human face.Finally the PERCLOS parameters of each frame of the image and the frequency of mouth movements are calculated,the relationship of double parameters within the unit time and the corresponding threshold is counted as the base of driving fatigue judgement.Experimental results show that to integrate the information of eyes and mouth reduces the probability of misjudgement and judgement leaks compared with the detection algorithm using single parameter under the condition of normal light.The method has good precision and robustness.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第3期25-27,54,共4页 Computer Applications and Software
基金 国家自然科学基金项目(51075280) 上海市教育委员会重点学科项目(J50505)
关键词 ADABOOST PERCLORS 模板匹配 数据融合 疲劳检测 Adaboost PERCLORS Template matching Data fusion Fatigue detection
  • 相关文献

参考文献6

二级参考文献49

共引文献67

同被引文献109

  • 1刘宏,李锦涛,苗军.多方法融合来解决人脸检测中的光照补偿[J].系统仿真学报,2001,13(S2):486-489. 被引量:14
  • 2胡国胜,钱玲,张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132. 被引量:33
  • 3张明吉,王伟强,郑清芳,高文.静态图像中的自适应阈值肤色检测算法[J].计算机研究与发展,2006,43(9):1674-1680. 被引量:8
  • 4M Ying-jie,H Ying-jie,Z Hai-yah,et al.Feature mouth shapes extraction based on contour of internal lips[C]//2010 International Conference on Wireless Communications Networking and Mobile Computing(WiCOM).IEEE press,2010:1-5.
  • 5Z Yi,L Quan-jie,L Yan-hua,et al.Intelligent wheelchair multimodal human-machine interfaces in lip contour extraction based on PMM[C]//2009 IEEE International Conference on Robotics and Biomimetics(ROBIO).IEEE,2009:2108-2113.
  • 6Kass M,Witkin A,Terzopoulos D.Snakes:Active contour modds[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 7Feng X,He Q,Wang W.An improved GAC model for lip contour detection[C]//9th International Conference on Signal Processing,2008(ICSP 2008).IEEE,2008:1215-1218.
  • 8Saha S,Pandey P C.Estimation of the area of mouth opening during speech production[C]//Proceedings of the Eighth Indian Conference on Computer Vision,Graphics and Image Processing.ACM,2012:27.
  • 9Viola P,Jones M J.Robust real-time face detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 10Freund Y,Schapire R E.A decision-theroretic generalization of on-line learning and an application to boosting[C]//Computational Learning Theory:Eurocolt 95.Springer-Verlag,1995:23-37.

引证文献17

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部