期刊文献+

基于云计算框架的视频转码系统 被引量:7

VIDEO TRANSCODING SYSTEM BASED ON CLOUD COMPUTING FRAMEWORK
下载PDF
导出
摘要 随着视频服务和高清视频的普及,视频服务提供商正面临着越来越多的高清视频转码需求。但是由于高清视频分辨率高、码率大,其转码复杂度是标清视频的数倍,而常规的转码系统虽然利用了多核并发来提高转码速度,但终究受限于单个计算节点的物理条件和转码算法本身的并发能力,使得转码速度提升空间有限。提出一个利用云计算的"Map-Reduce"计算框架的转码系统,将单个转码任务并发至多个计算节点,每个计算节点对同一个视频文件的不同部分分别进行转码,再将转码后的视频文件合并,从而显著提升了转码速度。 With the popularisation of video services and high definition(HD) videos,the video service providers are encountering growing needs of HD videos transcoding.Because of the high resolution and bit rate of HD video,the complexity of HD video transcoding is several times of that of the standard definition(SD) video's.Although the general transcoding systems have utilised the multiple core concurrency to increase the transcoding speed,it is still limited by the physical condition of single computing node and the concurrency ability of transcoding algorithm itself,which results in the limited increasing room of transcoding speed.In this paper,a transcoding system using the "Map-Reduce" computation framework of cloud computing is proposed.It assigns the single transcoding task to several computing nodes concurrently.Each computing node transcodes different parts of the same video file separately,and then each piece of the transcoded video will be merged afterwards,which significantly increases the transcoding speed.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第3期111-113,185,共4页 Computer Applications and Software
基金 上海市科委项目(10511516003)
关键词 高清视频 视频转码 云计算 HD video Video transcoding Cloud computing
  • 相关文献

参考文献5

二级参考文献24

  • 1宁华,梅铮,李锦涛.基于Slice的H.264并行视频编码算法[J].计算机工程,2005,31(4):181-182. 被引量:11
  • 2Ge S, Tian Xinmin, Chen Yen-Kuang. Efficient Multithreading Implementation of H.264 Encoder on Intel Hyper-threading Architectures[C]//Proc. of IEEE Pacific-Rim Conf. on Multimedia. Singapore:[s. n.], 2003.
  • 3Zhao Zhuo, Liang Ping. A Highly Efficient Parallel Algorithm for H.264 Video Encoder[C]//Proc. of IEEE Int'l Conf. on Acoustics, Speech and Signal Processing. Toulouse, France: [s. n.], 2006.
  • 4ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC-2003 Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification[S]. 2003.
  • 5高兵,秦俭,陈莉平等.NiosII多掇处理器之间通信技术的研究[J].Altera中国大学生电子设计文章竞赛获奖作品,2007.
  • 6Altera Corp.Creating Multiprocessor Niosll System Tutorial. Altera, 2007.
  • 7葛奇.基于DSP的H.264编码器的实现与优化[D].电子科技大学,2007.
  • 8Evidence.ERIKA Enterprise Manual for the Altera Nios II target(the multicore RTOS on FPGAs),2009.
  • 9MEENDERINCK C,AZEVEDO A,ALVAREZ M,et al. Parallel Scalabili- ty of H. 264 [ C ]//Proceedings of FirstWorkshop on programmability is- sues for multi - core computers. Goteborg: [ s. n. ] ,2008 : 1 - 164.
  • 10ZHAO Z,LIANG P. Data partition for wavefront parallelization of H. 264 video encoder [ J ]. IEEE International Symposium on Circuits and Sys- tems,2006(5) :21 -24.

共引文献12

同被引文献48

  • 1李征.视频格式及相互转换[J].中国有线电视,2004(9):107-109. 被引量:3
  • 2Niu D, Xu H, Li B, et al. Quality-assured cloud band- width auto-scaling for video-on-demand applications [C]//2012 Proceedings IEEE INFOCOM. 2012: 460-468. De Cicco L, Ma.
  • 3scolo S, Calamita D. A resource allocation controller for cloud-based adaptive video streaming [C]// 2013 IEEE International Conference on Communications Workshops (ICC). 2013:723-727.
  • 4De Cicco L, Mascolo S, Palmisano V. Feedback control for adaptive live video streaming [C]//Proceedings of the Sec- ond Annual ACM Conference on Multimedia Systems. 2011 : 145-156.
  • 5De Cicco L, Mascolo S, Abdallah C T. An experimental e- valuation of akamai adaptive video streaming over hsdpa networks[C]// 2011 IEEE International Symposium on Computer-Aided Control System Design (CACSD). 2011 : 13-18.
  • 6Stanaos K, Pallis G, Vakali A, et al. CDNsim: A simula- tion tool for content distribution networks [J]. ACM Transactions on Modeling and Computer Simulation (TOMACS), 2010,20(2) :1121-1128.
  • 7Summers J, Brecht T, Eager D, et al. Methodologies for generating HTTP streaming video workloads to evaluate Web server performance[C]// Proceedings of the 5th An- nual International Systems and Storage Conference. 2012: 214-220.
  • 8Niu D, Xu H, Li B, et al. Quality-assured cloud bandwidth auto scaling for video-on-demand applications [A]. INFOCOM, 2012 ProceedingsIEEE [C]. IEEE, 2012: 460-468.
  • 9De Cicco L, Mascolo S, Calamita D. A resource allocation controller for cloud-based adaptive video streaming [A]. 201a IEEE Inter- national Conference on Communications Workshops (ICC) [C]. IEEE, 2013: 723-727.
  • 10De Cicco L, Mascolo S, Palmisano V. Feedback control for adaptive live video streaming [A]. Proceedings of the second annual ACM conference on Multimedia systems [C]. ACM, 2011:145 -156.

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部