摘要
以传统的主元分析方法(Principal Component Analysis,PCA)为基础,利用负载矩阵构造SPCA相似因子(PCA Similarity Factor)和改进的相似因子SλPCA,通过衡量负载向量之间角度的大小对不同工况批次数据进行相似度比较,实现不同工况产品的分类.采用累计方差贡献率方法确定主元个数,将SλPCA应用到半导体间歇过程中进行数据分类.实验仿真结果表明:利用改进的相似因子SλPCA对半导体多工况数据的分类具有显著效果.
Based on the traditional principal component analysis (PCA), the load matrix is used to get S_PCA ( PCA similarity factor) and S_PCA^λ. Similarity factors of data under different working conditions are got by measuring the size of the angle between loading vectors, thus, The productions obtained from different conditions can be classified. In this article, the number of principal components is got by cumulative percent variance,S_PCA^λ is applied to semiconductor process to classify the data. The simulation results show that S_PCA^λ performs well to the classify of semiconductor data from different operator conditions.
出处
《沈阳化工大学学报》
CAS
2013年第1期58-62,共5页
Journal of Shenyang University of Chemical Technology
基金
国家自然科学基金资助项目(61034006
61174119)
关键词
PCA
相似因子
负载向量
累计方差贡献率
PCA
similar factor
loading vectors
cumulative contribution ratio