期刊文献+

噪声相关的带宽约束传感器网络融合算法 被引量:4

Bandwidth-Constrained Fusion Method for Sensor Networks with Correlated Noises
下载PDF
导出
摘要 研究了一类相关量测噪声和带宽限制背景下的传感器网络融合问题.利用Cholesky分解方法将量测方程转化为量测噪声互不相关的等价模型.由于带宽的限制,各局部传感器节点的原始信息需量化成消息才能上传到融合中心.文中采用自适应的量化策略获得了局部测量新息的量化消息,并利用顺序滤波和强跟踪滤波技术设计融合方法.简要分析了基于量化新息融合算法的性能特点.通过一个计算机仿真实验验证了新算法的有效性. Consider the fusion estimation problem of a bandwidth-constrained sensor network with correlated noises. First, the measurement equations with correlated measurement noises are transformed to the equivalent models with uncorrelated measurement noises by using the Cholesky factorization method. Due to limited bandwidth, only quantized messages of the original information from local sensor can be transmitted to fusion centre. In this paper, an adaptive quantization strategy is adopted for obtaining quantized messages of the local measurement innovations, whereas sequential filter and strong tracking filter are used to design fusion algorithms, Subsequently, a brief analysis of the performance characteristics of the fusion algorithm based on quantized innovations is introduced. Finally, a computer simulation shows the effectiveness of the proposed method.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2013年第2期200-203,共4页 Journal of Henan University:Natural Science
基金 国家自然科学基金(61002018) 宁波市自然科学基金(2011A610180)
关键词 传感器网络 信息融合 带宽约束 噪声相关 sensor network information fusion bandwidth constrained correlated noises
  • 相关文献

参考文献8

  • 1段战胜,韩崇昭.相关量测噪声情况下多传感器集中式融合跟踪[J].系统工程与电子技术,2005,27(7):1160-1163. 被引量:14
  • 2Luo ZQ. Universal decentralized estimation in a bandwidth constrained sensor network [J]. IEEE Trans, on InformationTheory, 2005,51(6) :2210-2219.
  • 3Krasnopeev A,Xiao JJ, Luo ZQ. Minimum energy decentralized estimation in a wireless sensor network with correlatedsensor noises[J]. EURASIP Journal on Wireless Communication and Networking, 2005,4: 473 - 482.
  • 4Ribeiro A, Giannakis GB,Roumeliotis SI. SOI-KF: Distributed Kalman filtering with low-cost communications using thesign of innovation [J]. IEEE Trans, on Signal Processing,2006,54(12) : 4782 -4795.
  • 5Sun SL, Lin JY, Xie LH,et al. Quantized Kalman filtering [C]//Proc. of IEEE 22nd International Symposium on Intelli-gent Control, USA: IEEE, 2007: 7 - 12.
  • 6WEN Chenglin,WEN Chenglin,GE Quanbo,GE Quanbo,TANG Xianfeng,TANG Xianfeng.Kalman Filtering in a Sensor Bandwidth Constrained Network[J].Chinese Journal of Electronics,2009,18(4):713-718. 被引量:6
  • 7Xu TL,Ge QB, Feng XL,et al. Strong tracking filter with bandwidth constraint for Sensor networks [C]//Proc. of the8th IEEE International Conference on Control &- Automation, Xiamen, China, 2010 : 596 - 601.
  • 8Xu XL, Ge QB. Networked strong tracking filters with noise correlations and bits quantization [C] //Proc. of the 3rd In-ternational Conference on Artificial Intelligence and Computational Intelligence, Taiyuan, China, 2011:183 - 192.

二级参考文献10

  • 1Blackman S S, Popoli R F. Design and analysis of modern tracking system[M]. Norwood MA: Artech House, 1999.
  • 2Hashemipour H R, Roy S, Laub A J. Decentralized structures for parallel Kalman filtering[J]. IEEE Trans. on Automatic Control, 1988, 33(1): 88-93.
  • 3Gan Q, Harris C J. Comparison of two measurement fusion methods for kalman-filter-based multisensor data fusion[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(1): 273-280.
  • 4Roy S, Iltis R A. Decentralized linear estimation in correlated measurement noise[J]. IEEE Trans. on Aerospace and Electronic Systems, 1991, 27(6):939-941.
  • 5Fitzgerald R J. Analytic track solutions with range-dependent errors[J]. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36(1): 343-348.
  • 6Li X R. Optimal linear estimation fusion for multisensor dynamic systems[A]. Proceedings of Workshop on Multiple Hypothesis Tracking-A Tribute to Sam Blackman[C]. San Diego, CA, 2003.
  • 7Li X R, Zhu Yunmin, Wang Jie, et al. Optimal linear estimation fusion-Part I: unified fusion rules[J]. IEEE Trans. on Information Theory, 2003, 49(9): 2192-2208.
  • 8Jin Xuebo, Sun Youxian. Optimal centralized state fusion estimation for multi-sensor system with correlated measurement noise [A]. Proceedings of 2003 IEEE Conference on Control Applications[C], Istanbul, Turkey, 2003. 770 -772.
  • 9何友,彭应宁.多级式多传感器信息融合中的状态估计[J].电子学报,1999,27(8):60-63. 被引量:26
  • 10李启虎.相关观测资料的最佳线性数据融合[J].声学学报,2001,26(5):385-388. 被引量:14

共引文献17

同被引文献44

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部