期刊文献+

苯氧基二氯均三嗪改性纤维素的合成与水解 被引量:3

Synthesis and Hydrolysis of Phenoxy Triazine Dichloride Modified Cellulose
下载PDF
导出
摘要 以三聚氯氰(TCT)、苯酚为原料,合成2,4-二氯-6-苯氧基-1,3,5-三嗪衍生物(PHCT);通过红外光谱和质谱表征其结构。用PHCT对纤维进行修饰,并将修饰后的微晶纤维素在8%(wt)H2SO4中、130℃下水解5 h,研究PHCT用量对纤维素水解性能和结晶结构的影响;实验结果表明,经PHCT改性的纤维素水解后的还原糖得率提高了,当PHCT相对摩尔含量(以葡萄糖环计)为16.67%时,纤维素水解成还原糖得率最大为23.54%;通过分析广角X射线衍射图发现,PHCT改性使微晶纤维素的结晶结构发生变化,无定形区增加,结晶指数下降,晶粒尺寸减小。 The purpose of this paper is to improve the yield of hydrolysis by the crystal structural change of cellulose based on chemical modification. A new 1,3,5-triazine derivative 2,4-dichloro- 6-phenoxyl- 1,3,5-triazine (PHCT) was synthesized from phenol and 2,4,6-trichloro- 1,3,5-triazine (TCT). The structure of PHCT was characterized with FT-IR and LC-MS spectra. Microcrystalline cellulose (MCC) was chemically modified with PHCT and the modified MCC was hydrolyzed to study the impact of the amount of PHCT on the crystal structure and the hydrolysis property of cellulose. The hydrolysis of the modified cellulose was carried on in the sulfur acid of which the concentration was 8%, at the temperature of 130℃ and with the duration of 5 hours. The yield of the reducing sugar is about 23%, which is the highest in the present study, as the relative molar percentage of PHCT in cellulose (by the cellulosic glucose ring) is 16.67%. The wide X-ray diffractometer spectra show that the crystalline structure of cellulose is changed a lot by chemical modification, which is considered being beneficial for the hydrolysis of cellulose.
出处 《纤维素科学与技术》 CAS CSCD 2013年第1期9-15,共7页 Journal of Cellulose Science and Technology
基金 华南理工大学制浆造纸工程国家重点实验室开放基金课题(201031) 国家自然科学基金项目(31270632)
关键词 微晶纤维素 三聚氯氰 2 4-二氯-6-苯氧基-1 3 5-三嗪 结晶结构 酸水解 microcrystalline cellulose cyanuric chloride 2,4-dichloro-6-phenoxyl-1,3,5-triazine crystalline structure acid hydrolysis
  • 相关文献

参考文献22

  • 1Dwivedi P, Alavalapafi R R J, Lal E Celhlosic ethanol production in the United States: Conversion technologies, current production status, economics, and emerging developments[J]. Energy for Sustainable Development, 2009, 13(3): 174-182.
  • 2李永涛.纤维素水解生产乙醇的研究进展[J].应用能源技术,2010(3):13-15. 被引量:7
  • 3Jeewon Lee. Biological conversion of lignocellulosic biomass to ethanol[J]. Journal of Biotechnlogy, 1993, 56(1): 1-24.
  • 4岑沛霖,吴健,张军.植物纤维浓硫酸水解动力学研究[J].化学反应工程与工艺,1993,9(1):34-41. 被引量:23
  • 5Mustafa B, Hawa B, Cahide O. Progress in bioethanol processing[J]. Progress in Energy and Combustion Science, 2008, 34(5): 551-573.
  • 6何北海,林鹿,孙润仓,孙勇.木质纤维素化学水解产生可发酵糖研究[J].化学进展,2007,19(7):1141-1146. 被引量:49
  • 7Gonzalez-Tello P, Camacho F, Jurado E. A simple method for obtaining kinetic equations to describe the enzymatic hydrolysis ofbiopolymers[J]. Biotechnol, 1996, 67(3): 286-290.
  • 8Nigam I N. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis[J]. Journal of Biotechnologv, 2001, 87(1): 17-27.
  • 9Lind L R, Cushman J H, Nichols R J, et al. Fuel ethanol from cellulosic biomass[J]. Science, 1992, 251: 1318-1323.
  • 10Lugar R G; Woolsey R J. The new petroleum[J]. Foreign Affaires, 1999, 78: 88-102.

二级参考文献95

共引文献127

同被引文献50

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部