期刊文献+

一类广义的Fibonacci矩阵与Riordan矩阵

A Class of the Generalized Fibonacci Matrix and Riordan Matrix
下载PDF
导出
摘要 给出一类广义Fibonacci矩阵形式,构造出一个Riordan阵,得到此类广义Fibonacci矩阵分解;并利用三对角行列式的理论和Riordan矩阵理论,证明了一些有关Fibonacci数的恒等式. A generalized Fibonacci matrix form is given. The factorization of the generalized Fibonacci ma- trix is derived by constructing a Riordan array. However,by using the triangular determinants theory and the Riordan method,some identities involving Fibonacci numbers are proved.
作者 鱼璐 王辉
出处 《甘肃科学学报》 2013年第1期8-12,共5页 Journal of Gansu Sciences
关键词 FIBONACCI序列 三对角行列式 Fibonacci矩阵 PASCAL矩阵 Riordan矩阵 Fibonacci sequence triangular determinant Fibonacci matrix Pascal matrix Riordan matrix
  • 相关文献

参考文献9

  • 1Vajbas S. Fibonacci,Lucas Numbers and the Golden Section[M], New York: Wiley, 1989.
  • 2Aharonov D,Beardon A.Driver K. Fibonacci,Chebyshev and Orthogonal Polynomials[J]. Amer. Monthly,2005,112 :612-630.
  • 3Gregory S. Call.Daniel J. Velleman. Pascal,s Matrices[J], The American Mathematical Association of America,1993.100(4) :372-376.
  • 4Lee G Y.Kimb J S,Cho S H. Some Combinatorial Identities Via Fibonacci Numbers[J]. Discrete Applied Mathematics, 2003,130 : 527-534.
  • 5Shapiro L W.Getu S,Woan W J ,c. al. The Riordan Oroup[J]. Discrete Appl.Math, 1991,34:229-239.
  • 6Lee G Y,Cho S H. The Generalized Pascal Matrix Via the Generalized Fibonacci Matrix and the Generalized Pell Matrix[J]. Korean Math-ematical Society,2008,45(2) :479-491.
  • 7Sprugnoii R. Riordan Arrays and Combinatorial Sums[J]. Discrete Mathematics, 1994.132(1-3) :267-290.
  • 8杨胜良.三对角矩阵的特征值及其应用[J].数学的认识与实践,2010,40(3):155-160.
  • 9李青平,贾彦益,黄中跃.幂和矩阵及其代数性质[J].甘肃科学学报,2011,23(1):20-24. 被引量:1

二级参考文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部