期刊文献+

传热规律和各种损失对考虑热弛豫的广义不可逆卡诺制冷机性能影响

Effects of Heat Transfer Law and Some Losses on the Performance of a Generalized Irreversible Carnot Refrigerator with Relaxation Effect on Heat Transfer
下载PDF
导出
摘要 本文利用复变函数方法研究了传热规律、热弛豫、内不可逆性和热漏对广义不可逆卡诺制冷机性能的影响,以复数传热指数的虚部表示传热过程的弛豫现象.结果表明传热规律对高、低温侧热导率比、制冷率和制冷系数有很大影响;传热过程的弛豫现象和制冷机内不可逆性对高、低温侧热导率比、制冷率和制冷系数有影响,但影响程度不大;热漏对高、低温侧热导率比影响不明显,对制冷率和制冷系数有较大影响.所得结果对实际制冷机的设计和使用具有理论指导作用. The effects of heat transfer law, relaxation effect on heat transfer, internal irre- versibility and bypass heat leak on the performance of a generalized irreversible Carnot refrig- erator were studied by using theory of complex function. The imaginary part of the complex heat transfer exponent indicated the relaxation of a heat transfer process. The obtained results show that the heat transfer laws have prominent influences on the heat conductance ratio of high and low temperature sides, cooling load and coefficient of performance (COP); the relax- ation of a heat transfer process and the internal irreversibility have small influences on the heat conductance ratio of high and low temperature sides, cooling load and COP; the bypass heat leak has indistinctive influence on the heat conductance ratio of high and low temperature sides and has prominent influence on cooling load and COP. The obtained results can provide some theoretical guidance for the designs and application of real refrigerator.
作者 樊艮
出处 《工程数学学报》 CSCD 北大核心 2013年第2期197-204,共8页 Chinese Journal of Engineering Mathematics
关键词 复变函数 广义不可逆卡诺制冷机 热弛豫 复数传热指数 制冷率 制冷系数 complex function generalized irreversible Carnot refrigerator relaxation of heattransfer process complex heat transfer exponent cooling load COP
  • 相关文献

参考文献11

  • 1Andresen B. Finite Time Thermodynamics, Physics Laboratory II[M]. Copenhagen: University of Copen- hagen, 1983.
  • 2Bejan A. Entropy Generation Minimization[M]. Boca Raton: CRC Press, 1996.
  • 3Chen L G, Wu C, Sun F R. Finite time thermodynamic optimization or entropy generation minimization of energy systems[J]. Journal of Non-Equilibrium Thermodynamics, 1999, 24(4): 327-359.
  • 4Berry R S, Kazakov V A, Sieniutycz S, et al. Thermodynamic Optimization of Finite Time Processes[M]. Chichester: Wiley, 1999.
  • 5Andresen B. Current trends in finite-time thermodynamics[J]. Angewandte Chemie International Edition 2011, 50(12): 2690-2704.
  • 6Leff H, Teeter R. COP and second law efficiency for air conditioners[J]. American Journal of Physics, 1978 46(1): 19-22.
  • 7严子浚.卡诺制冷机的最佳制冷系数与制冷率关系.物理,1984,13(12):768-770.
  • 8Chen L G, Sun F R, Wu C, et M. A generalized model of a real refrigerator and its performance[J]. Applied Thermal Engineering, 1997, 17(4): 401-412.
  • 9Li J, Chen L G, Sun F R. Cooling load and coefficient of performance optimizations for a generalized irreversible Carnot refrigerator with heat transfer law q (x (ATn)m[J]. Proceedings of the Institution of Mechanical Engineers Part E:Journal of Process of Mechanical Engineers, 2008, 222(E1): 55-62.
  • 10Wu F, Wu C, Guo F, et al. Optimization of a thermoacoustic engine with a complex heat transfer expo- nent[J]. Entropy, 2003, 5(5): 444-451.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部