期刊文献+

具有两步保费率的扰动风险模型(英文)

Perturbed Risk Model with a Two-step Premium Rate
下载PDF
导出
摘要 本文探讨了具有两步保费率的扰动风险模型,对其破产前首次通过某一给定水平的时间的拉普拉斯变换进行了研究,由强马氏性和位移算子得出了破产前最大盈余、破产前瞬时盈余及破产赤字的联合分布. In this paper, we consider a perturbed risk model with a two-step premium rate and investigate the Laplace transform of the first passage time across a given level before ruin. By using the strong Markov property and shift operator, we obtain the joint distribution of the maximal surplus before ruin, the surplus immediately before ruin and the defieiL at ruin, associated with the ruin time.
出处 《工程数学学报》 CSCD 北大核心 2013年第2期278-282,共5页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(11201356) the Key Laboratory of Systems Science in Metallurgical Process Foundation Office of Hubei Province(C201008)
关键词 LAPLACE变换 扰动风险模型 破产时刻 盈余过程 两步保费率 Laplace transform perturbed risk model ruin time surplus process two-steppremium rate
  • 相关文献

参考文献6

  • 1Emery D J. Exit problem for a spectrally positive process[J]. Advances in Applied Probability, 1973, 5(3): 498-520.
  • 2Chiu S N, Yin C C. The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion[J]. Insurance: Mathematics and Economics, 2003, 33(1): 59-66.
  • 3Zhang C S, Wang G J. The joint density function of three charazteristics on jump-diffusion risk processIJI. Insurance: Mathematics and Economics, 2003, 32(3): 445-455.
  • 4Zhou X W. When does surplus reach a certain level before ruin?[J]. Insurance: Mathematics and Economics, 2004, 35(3): 553-561.
  • 5Zhang Z M, Yang H. Gerber-Shiu analysis in a perturbed risk model with dependence between claim sizes and interclaim times[J]. Journal of ComputationM and Applied Mathematics, 2011, 235(5): 1189-1204.
  • 6Zhang Z M, Yang H, Li S M. The perturbed compound Poisson risk model with two-sided jumps[J]. Journal of Computational and Applied Mathematics, 2010, 233(8): 1773-1784.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部