期刊文献+

一种基于滑动窗口的数据流摘要构造算法

An Algorithm for Construction of Synopses over Data Stream Based on Sliding Windows
下载PDF
导出
摘要 由于数据流具有无限、高速等特性,使得对数据流的查询处理往往不是面向整个数据流,而是把查询处理的范围限定在某个可操作的范围内,比如一个数据窗口。另一方面,通过数据摘要近似表达数据,也是数据流查询处理应对存储空间约束的常用策略。本文提出一种基于滑动窗口的数据流小波摘要构造算法,利用了窗口技术与数据摘要技术的优点。算法的基本思路是基于滑动窗口模型,将数据流划分成若干等宽基本窗口,每个基本窗口内数据进行小波分解与系数约简,从而形成滑动小波摘要窗口。为使窗口内数据摘要绝对重构误差最优,定义一个系数删减标准,采用贪心策略对窗口内小波系数逐步求精,从而获得最优绝对误差小波摘要。实际应用结果证明了算法的有效性。 Because of its limitless and high rate,data stream is always processed within a limited range such as a data window.On the other hand,construction of synopses for data stream is always a good choice to copy with the limitation of store space.This paper proposes an algorithm for construction of synopses over data stream basing on sliding windows,which takes advantage of the merit of windows technology and synopses.The basic idea of the algorithm is to divide data stream into equally-sized basic windows and represent the data elements of a basic window using reduced wavelet coefficients.For getting the synopses with optimal maximum absolute error,the algorithm defines a parameter to reduce wavelet coefficients using a greedy strategy.At last,the wavelet synopses of data stream with optimal absolute error are got.The practical application verifies the efficiency of the algorithm.
出处 《计算机与现代化》 2013年第3期17-21,共5页 Computer and Modernization
基金 国家科技支撑计划重点资助项目(2006BAG01A07)
关键词 数据流 滑动窗口 小波分解 数据摘要 data stream sliding window wavelet decomposition data synopses
  • 相关文献

参考文献15

  • 1Gilbert A C, Kotidis Y, Muthukrishnan S, et al. Optimal and approximate computation of summary statistics for range aggregates[ C]// Proceedings of the Twentieth ACM SIG- MOD-SIGACT-SIGART Symposium on Principles of Data- base Systems. 2001:227-236.
  • 2Muthukrishnan S. Subquadratic algorithms for workload-a- ware Haar wavelet synopses[ C]//Proceedings of the 25th International Conference on Foundations of Software Tech- nology and Theoretical Computer Science. 2005:285-296.
  • 3A Karras P, Mamoulis N. One-pass wavelet synopses for maxi- mum-error metrics [ C ]// Proceedings of the 31st Interna- tional Conference on Very Large Data Bases. 2005:421- 432.
  • 4Sacharidis D, Deligiannakis A, Sellis T. Hierarchically compressed wavelet synopses [.l ]. The International Journal on Very Large Data Bases, 2009, 18 (1) :203-231.
  • 5Golab L, De Haan D, Demaine E D, et al. Identifying fre- quent items in sliding windows over on-line packet streams [ C]// Proceedings of the 3rd ACM SIGCOMM Conference on Intemet Measurement. 2003:173-178.
  • 6Yunyue Zhu, Dennis Shasha. StatStream: Statistical moni- toring of thousands of data streams in real time[ C]//Pro- ceedings of the 28th International Conference on Very Large Data Bases. 2002:358-369.
  • 7Daniel Lemire. Wavelet-based relative prefix sum methods for range sum queries in data cubes [ C ]//Proceedings of the 2002 Conference of the Centre for Advanced Studies on Collaborative Research. 2002:6.
  • 8Chi Y, Wang H X, Yu P S, et al. Moment: Maintaining closed frequent itemsets over a stream sliding window [ C ]//Proceeding of the 2004 International Conference on Data Mining. 2004:59-66.
  • 9Chandrasekaran S, Krishnamurthy S, Madden S. Windows Explained, Windows Expressed [ Z ]. Technical Report, 2003.
  • 10Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, et al. Sliding window-based frequent pattern mining over data streams [ J ]. Information Sci- ences : an International Journal, 2009, 179 ( 22 ) : 3843- 3865.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部