期刊文献+

测地声模的径向“蝌蚪”定域化结构 被引量:2

The "tadpole" localization in radial structure of geodesic acoustic mode
下载PDF
导出
摘要 从Braginskii冷离子流体模型出发,利用准环坐标系,导出了轴对称(环向模数为零的)扰动密度和扰动电位所服从的两个二维线性偏微分本征波方程。采用WKB法及Langer变换,解出了测地声模过转向点一致有效的整体模结构和分立本征频率谱;论述了不存在连续谱解的原因;指出Schrdinger意义下的径向高激发态对应了近零频模;论证了与测地声模定级分析的自洽性将导致"蝌蚪"定域化;并讨论了"蝌蚪"定域化理论与实验上所观察到的"多个测地声模共存"现象之间的关係。 Based on the Braginskii's cold ion fluid model, using the quasi-toroidal coordinate system, the two partial differential equations of perturbed density and electrostatic potential describing axial-symmetric (zero toroidal mode number) sound waves have been derived. The coupled equations are then solved for the geodesic acoustic mode (GAM) by making use of the WKB method and Langer transform to obtain the uniformly valid radial mode structure over WKB turning point, and the eigen-frequencies are determined. It is found that no continuum solution for GAM is possible. The near-zero mode frequencies are identified to be associated with the "high energy" excited states in a sense of Schrrdinger equation. It is also argued that the radial structure consistency with GAM ordering demands the "tadpole" localization. The implication of the "tadpole" localization to "multi-GAM co-existence" observed is experimentally discussed.
作者 章扬忠 谢涛
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2013年第1期1-6,共6页 Nuclear Fusion and Plasma Physics
基金 ITER-China Program(2010GB107000) National Natural Science Foundation of China(NSFC-11075162) National Magnetic Confinement Fusion Science Program(China)(2009GB101002)
关键词 测地声模 低-高模转换 蝌蚪定域化 Langer变换 Geodesic acoustic mode L-H transition Tadpole localization Langer transform
  • 相关文献

参考文献13

  • 1Fujisawa A. A review of zonal flow experiments [J]. Nucl. Fusion, 2009, 49: 013001.
  • 2Hillesheim J C, Peebles W A, Carter T A, et al. Experimental investigation of geodesic acoustic mode spatial structure, intermittency, and interaction with turbulence in the DIII-D tokamak [J]. Phys. Plasmas, 2012, 19: 022301.
  • 3Conway G D, Angioni C, Ryter F, et al. Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition [J]. Phys. Rev. Lett., 2011, 106: 065001.
  • 4McKee G R, Gohil P, Schlossberg D J, et al. Dependence of the L- to H-mode power threshold on toroidal rotation and the link to edge turbulence dynamics [J]. Nucl. Fusion, 2009, 49:115016.
  • 5Zhang Y Z, Xie T, Mahajan S M. Analysis on the exclusiveness of turbulence suppression between static and time-varying shear flow [J]. Phys. Plasmas, 2012, 19: 020701.
  • 6Itoh K, Itoh S, Diamond P H, et al. Geodesic acoustic eigenmodes [J]. Plasma and Fusion Research, 2006, 1: 037.
  • 7Zonca F, Chen L. Radial structures and nonlinear excitation of geodesic acoustic modes [J]. EPL, 2008, 83: 35001.
  • 8Sasaki M, Itoh K, Ejiri A, et al. Radial eigenmodes of geodesic acoustic modes [J]. Contrib. Plasma Phys., 2008, 48: 68.
  • 9Gao Zhe, Itoh K, Sanuki H, et al. Eigenmode analysis of geodesic acoustic modes [J]. Phys. Plasmas, 2008, 15: 072511.
  • 10Sasaki M, Itoh K, Ejiri A, et al. Modification of symmetry of poloidal eigenmode of geodesic acoustic modes [J]. Plasma and Fusion Research, 2008, 3: 009.

同被引文献14

  • 1Anderson P W. Absence of diffusion in certain random lattices [J]. Phys. Rev., 1958, 109: 1492.
  • 2Lagendijk Ad, Tiggelen B Van, Wiersma D S. Fifty years of Anderson localization [J]. Phys. Today, 2009, 8: 24.
  • 3Izrailev F M, Krokhin A A, Makarov N M. Anomalous localization in low-dimensional systems with correlated disorder [J]. Physics Reports, 2012, 512: 125.
  • 4Fouque J P, Gamier J, Papanicolaou C et al. Wave propagation and time reversal in Randomly layered media [M]. NewYork: Springer Berlin, Heidelberg, 2007.
  • 5Sheng E Introduction to wave scattering, localization and mesoscopic phenomena [M]. NewYork: Springer Berlin, Heidelberg, 2006.
  • 6w. Garanovich Ivan L, Stefano Longhi, Sukhorukov Andrey A, et al. Light propagation and localization in modulated photonic lattices and waveguides [J]. Physics Reports, 2012, 518: 1.
  • 7Ito K, HaUatschek K, Itoh S I. Excitation of geodesic acoustic mode in toroidal plasmas [J]. Plasma Phys. Contr. Fusion, 2005, 47: 451.
  • 8Chakrabarti-N, Singh- R, Kaw P K, et al. Nonlinear excitation of geodesic acoustic modes by drift waves [J]. Phys. Plasmas, 2007, 14: 052308.
  • 9Lax M. Multiple scattering of waves [J]. Rev. Mod. Phys., 1951, 23: 287.
  • 10Stringer T. Diffusion in toroidal plasmas with radial electric field [J]. Phys. Rev. Lea., 1969, 22: 770.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部