期刊文献+

聚变堆氚系统设计中的一些重要问题研究(Ⅰ) 被引量:3

Innovative researches on some important problems in fusion reactor tritium system design(Ⅰ)
下载PDF
导出
摘要 聚变堆第一壁表面和PFC材料内的氚滞留量、堆系统总的氚投料量多高?在启动和运行的开始阶段的氚坑深度,氚坑时间的大小是多少?在TBM氚增殖包层内固体氚增殖剂中的氚能否高效率地被载氚气体带出来并且以高效率地提取回收?能否找到某些新机制解决这些问题是决定实现ITER的预期目标和最终实现聚变能的实际运用成败的关键问题。本文第(Ⅰ)部分回答前面两个问题,在下期第(Ⅱ)部分将进行创新的探索性研究并且提出某些减少氚滞留量和改善氚提取回收效率的新方案,例如:基于氘饱和的海绵效应;第一壁表面建立氘和铍的伴同沉积层;基于在低频外电场作用下载氚气分子和硅酸锂颗粒电极化旋转催化同位素交换速率增强提高载氚气提取氚效率"SPB方法"等等。 How high are the tritium retention on the first wall surface and the total tritium inventory in PFC materials of a fusion reactor? How much are the tritium well depth and tritium well time during a fusion reactor start-up and initial operation phase? How high tritium recovery efficiency can be obtained in the ITER TBM solid breeder blanket with using purge gas? Can we find some effective mechanisms to solve the above mentioned problems? All of these problems are decisive key issues on the way to achieve the ITER final anticipant goals and to attain realistic fusion energy application ultimately. In the first part of this article, the first two questions have been answered. Some innovative researches on above mentioned rest problems are performed and some new schemes for reducing tritium retention and improving tritium recovery efficiency are proposed in the second part of this article to be published next issue, such as, sponge mechanism based on deuterium saturated PFC materials; deuterium and beryllium co-deposition layer created on first wall surface; SPB scheme for enhancing isotope exchange rate and tritium recovery efficiency of purge gas in ceramic breeder blanket based on the catalyzed electrical polarization rotations, resulted from applied low frequency electric-field, of LiaSiO4 grain and purge gas molecular particles and so on, will be explored.
作者 邓柏权
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2013年第1期13-18,共6页 Nuclear Fusion and Plasma Physics
关键词 氚滞留量 氚坑深度 氚坑时间 海绵效应 氘和铍的伴同沉积 SPB方法 Tritium retention Tritium well depth Tritium well time Sponge mechanism Deuterium andberyllium co,deposition SPB scheme
  • 相关文献

参考文献9

  • 1Deng B Q, Li Z X, Feng K M. Tritium well depth, tritium well time and sponge mechanism for reducing tritium retention [J]. Nucl. Fusion, 2011, 51(7): 073041.
  • 2Loarer T, Brosset C, Bucalossi J, et al. Gas balance and fuel retention in fusion devices [J]. Nucl. Fusion, 2007, 47(9): 1112-1120.
  • 3Brezisek S, Loarer T, Krieger K, et al. Fuel retention in impurity seeded discharges in JET after Be evaporation [J]. Nucl. Fusion, 2011, 51(7): 073007.
  • 4I)eng B Q, Li X Z, Huang J H, et al. Computer simulation of tritium inventory and leakage of the fusion experimental reactor of FEB-E [J]. Fusion Science and Technology, 2004, 46(4): 548.
  • 5Deng B Q, Huang Q R, Peng L L, et al. Measurement of hydrogen solubility, diffusivity and permeability in HR-1 stainless steel [J]. J. Nucl. Mater., 1992, 191-194: 653.
  • 6Deng Bai-quan, Allain J P, Lou Zheng-ming. Nearsurface bipartition model for the study of material response of plasma-facing surfaces exposed to energetic charged particles [J]. NIMB, in Res. B, 2007, 259: 847-852.
  • 7Kuan W, Abdou M A, Willims R S. Mean residence method of calculation tritium inventory [J]. Fusion Eng. Des., 1995, 28: 329.
  • 8Anderson J L. The status of tritium technology develop- ment for magnetic fusion energy [J]. Nuclear Technology Fusion, 1983, 4(2): 75.
  • 9Sze D K, Mattas R F, Anderson J L. Tritium recovery from lithium based on cold trap [J]. Fusion Engineering and Design, 1995, 28: 220.

同被引文献9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部