期刊文献+

加工精度和金属切除率的精车切削优化 被引量:16

Optimization for Machining Precision and Metal Removal Rate in Finish Turning
下载PDF
导出
摘要 以表面粗糙度、刀具耐用度、切削温度、切削区域、切削功率等实际约束条件,建立了以加工精度与金属切除率为双目标的精车切削优化模型。通过实例运用NSGA-II算法与MOPSO算法对精车优化切削模型进行仿真,计算表明NSGA-II算法获得更完整的Pareto解集。在不同的表面粗造度条件下,加工精度和金属切除率Pareto最优解集能由同一线性方程拟合,且拟合相关指数≥0.9997。实践数据表明,精车切削优化计算结果优于经验数据,为精车切削参数优化选择提供了实践指导。 A dual-objective optimization cutting model for finish turning, based on minimum machining precision and maximum metal removal rate, is firstly proposed in this paper. The model is subject to vari- ous practical cutting constraints, including surface roughness, bounds for tool-life, chip-tool interface tem- perature, stable cutting region, cutting power, spindle torque, cutting force, cutting tool strength and fin- ishing parameter relations. The Nondominated sorting genetic algorithmlI (NSGA-II) and multi-objective particle swarm optimization(MOPSO) are applied to the dual-objective nonlinear constrained optimization finish turning cutting model. Simulation results indicate that the Pareto-optimal solutions set by using NS- GA-II algorithm are obtained more complete than the Pareto-optimal solutions set by applying the MOPSO algorithm. Under different surface roughness, the Pareto-optimal solutions set for the machining precision and metal removal rate can be fitted by the same linear equation and these fitting relevant indexes are grea- ter than or equal to 0. 9997. Cutting experiment shows that the data of optimization finish cutting model is better than the experience data, which provides practical guides for optimization of machining parameters.
出处 《组合机床与自动化加工技术》 北大核心 2013年第3期111-114,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 湖北武汉高校科研项目(2010140)
关键词 加工精度 金属切除率 切削优化 machining precision metal removal rate optimization of machining parameters
  • 相关文献

参考文献14

  • 1K. Vijayakumar, G. Prabhaharan, P. Asokan, R. Sara- vanan. Optimization of multi-pass turning operations using ant colony system [ J ]. International Journal of Machine Tools & Manufacture, 2003,4 (43) : 1633 - 1639.
  • 2叶迎春 王树斌.基于线性目标规划的切削参数多目标优化.科技信息,2008,22:556-558.
  • 3陈桦,赵海霞.基于线性目标规划的切削参数多目标优化模型[J].西安工业大学学报,2007,27(1):24-28. 被引量:4
  • 4潘敏强,刘亚俊,汤勇.车削加工中切削用量的分层多目标最优化模型[J].工具技术,2005,39(8):29-33. 被引量:11
  • 5Kalyanmoy Deb, Amrit Pratap. A Fast and Elitist Multi-ob- jective Genetic Algorithm: NSGA-Ⅱ[ J]. IEEE Transactions on Evolutionary Computation, 2002,6 ( 2 ) : 182 - 197.
  • 6Abdul|ah Konak David W. Coit, Alice E. Smith Multi-ob- jective optimization using genetic algorithms[ J]. Reliability Engineering and System Safety 2006,91 (9) :992 - 1007.
  • 7朱小平,王涛.基于多目标粒子群算法的切削用量多决策优化研究[J].组合机床与自动化加工技术,2010(3):27-29. 被引量:13
  • 8Coello, C. A. C. ; Pulido, G. T. ; Lechuga, M.S. Handling multiple objectives with particle swarm optimizations[ J ]. E- volution Computation, IEEE Transactions on. 2004,8 ( 3 ) : 256 - 279.
  • 9金属切削理论与实践编委会.金属切削理论与实践[M].北京:北京出版社,1985.
  • 10王先逵.机械加工工艺手册工艺基础卷[M].北京:机械工业出版社,2006.

二级参考文献15

共引文献34

同被引文献126

引证文献16

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部