期刊文献+

视频序列中基于LBP特征的人体行为识别 被引量:3

Human Action Recognition Based on Local Binary Pattern Feature in Video Sequences
下载PDF
导出
摘要 视频序列中的行为分析与识别已经成为当前计算机视觉领域的研究热点。为了更加有效地提取人体行为序列中的轮廓特征的信息,提出了一种基于局部二值模式(Local Binary Pattern,LBP)特征的人体行为识别的算法。通过背景差分法从视频中提取完整的人体运动序列,利用LBP算子计算运动序列的LBP特征谱,组成样本的LBP轮廓特征空间,接着将特征空间通过K-means聚类的方法生成行为特征。最后,采用隐马尔可夫模型(HMM)对特征进行识别。实验过程中,分别在两个公共行为数据库上进行了测试实验,平均识别率能达到85%以上,并且在两个数据库的交叉实验结果表明了本文算法具有一定的鲁棒性。 Human action recognition in the video sequence have become a hot research topic in computer vision field. In order to extract the contour feature of the human's behavior sequence more effectively, a new algorithm for human action recognition based on Local Binary Pattern (LBP) is proposed. Firstly, background subtraction algorithm is used to extract the complete human motion sequence in the video, and the LBP operators are used to calculate the samples' LBP feature space which is composed of the motion sequences' LBP feature spectrum. Then, the behavior feature is generated by k-means clustering method. Finally, the Hidden Markov Model (HMM) is adopted for the classification. During the experiment, the test experiment is performed in the two public behavior databases respectively, and the average recognition rate can reach more than 85%. The intersection of the two databases experimental results shows that the proposed algorithm has certain robustness
出处 《光电工程》 CAS CSCD 北大核心 2013年第3期108-114,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(60574051) 江苏省产学研联合创新资金-前瞻性联合研究项目(BY2012067)
关键词 行为识别 局部二值模式 K-MEANS聚类 隐马尔科夫模型 human action recognition LBP K-means HMM
  • 相关文献

参考文献18

  • 1黎洪松,李达.人体运动分析研究的若干新进展[J].模式识别与人工智能,2009,22(1):70-78. 被引量:38
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Neil Robertson, Ian Reid. A general method for human activity recognition in video [J]. Journal of Computer Vision and Image Understanding(S1077-3142), 2006, 104(2): 232-248.
  • 4HU Yong, ZHENG Wei. Human Action Recognition Based on Key Frames [C]// Advances in Computer Science and Education Applications InternationaI Conferenee(CSE 2011), Qingdao, China, July 9-10, 2011: 535-542.
  • 5Luca Costantini, Lorenzo Seidenari, Giuseppe Serra, et al. Space-Time Zemike Moments and Pyramid Kernel Descriptors for Action Classification [C]//Image Analysis and Processing (ICIAP 2011) 16th International Conference, Ravenna, Italy, September 14-16, 2011: 199-208.
  • 6Johansson G Visual motion perception [J]. Scientific American(S0036-8733), 1975, 232(2): 76-88.
  • 7Polana R, Nelson R. Low-level recognition of human motion [C]// Proceedings of Motion of Non-Rigid and Articulated Objects, Austin, Texas, USA, 1994: 77-82.
  • 8Yamato Junji, Ohya Jun, Ishii Kenichiro. Recognition human action in time sequential images using hidden Markov model [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Champaign, Urbana, USA, 1992: 379-385.
  • 9Jin N, Mokhtarian F. Image-based shape model for view-invariant human motion recognition [C]// Proceedings of IEEE Conference on Advanced Video and signal Based Surveillance, London, UK, 2007: 336-341.
  • 10Wang Liang, Suter David. Informative shape representations for human action recognition [C]// Proceedings of International Conference on Pattern Recognition, Hong Kong, China, 2006: 1266-1269.

二级参考文献175

共引文献194

同被引文献49

  • 1赵萌萌,曹建秋.基于边缘角点的SIFT图像配准算法[J].重庆交通大学学报(自然科学版),2013,32(4):721-724. 被引量:4
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Bobick A F, Davis J W. The recognition of human move- ment using temporal templates [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2001,23 (3) : 257 -267.
  • 4Park S, Aggarwal J K. A hierarchical Bayesian network for event recognition of human actions and interactions [ J ]. Multimedia Systems, 2004,10 (2) : 164-179.
  • 5Wang Ying, Huang Kai-qi, Tan Tie-niu. Abnormal activity recognition in Office based on rtransform[ C ]//2007 IEEE International Conference on Image Processing. 2007:341- 344.
  • 6Alexandros Andre Charaui, Pau Climentperez, Fr-anciso Florez Reueha. Silhouette-based human action recognition using sequence of key poses [ J ]. Pattern Recognition Let- ters, 2013,34 (15) : 1799-1807.
  • 7齐美彬,朱启兵,蒋建国.基于局部描述子的人体行为识别[J].计算机技术与应用,2012,38(7):123-125.
  • 8Niebles J C, Wang H, Li F F. Unsupervised learning of human action categories using spatial-temporal words [ J ]. International Journal of Computer Vision, 2008,79 ( 3 ) : 299 -318.
  • 9Dollar P, Rabaud V, Cotterll G, et al. Behavior recogni- tion via sparse spatio-temporal features [ C ]/! Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. 2005 : 65-72.
  • 10Jolliffe I T. Principal Component Analysis(2nd) [M]. New York: Springer-Verlag, 1996.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部