期刊文献+

混响室的混沌特性及其场统计分布 被引量:7

Chaotic characteristics and statistic distribution of field in reverberation chamber
下载PDF
导出
摘要 采用有限元数值方法计算了理想和实际结构混响室的本征频率,将其本征频率间隔分布与量子混沌理论不同系综的理论分布进行对比分析,证明了实际结构混响室的系综为高斯正交系综,混响室为混沌系统。在此基础上,利用随机平面波假设将理想金属混响室内电场矢量本征函数表示为随机平面波的线性叠加,进而将混响室内电场表示为与横电磁波两种可能的极化方式对应的矢量本征函数展开式。根据矢量本征函数的概率分布得到了电场任一笛卡尔坐标分量服从2自由度的Rayleigh分布,总场服从6自由度的Rayleigh分布。用ETS HI-6105光纤电场探头对某混响室进行了电场分量值测量,比较了测量数据与理论模型的累积概率分布。结果表明,试验结果与理论模型符合较好,证明了电场统计分布模型的有效性。 Quantum chaos theory is used to study a reverberation chamber (RC). We evaluate the chaotic characteristics of a numerical RC by analyzing the eigenfrequency spacing distribution with the finite element method. Based on the electromagnetic chaotic features and the hypothesis, the electric field vector eigenfunction in the RC could be expressed as linear superposition of random plane waves. Then the electric field in the RC can be expressed as the vector eigenfunction expansion. The Rayleigh dis- tribution model of probability density function of electric field in the RC is derived by statistical approach. The electric field inten- sity measurement in an actual mechanical stirring RC is completed with ETS HI-6105 prober. The electric field distribution in the chamber is in close agreement with the result from the statistical model, which proves the validity of the theoretical model.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2013年第4期940-944,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(61201120) 陕西省自然科学基金项目(2011JQ8030)
关键词 混响室 微波混沌 本征频率间隔分布 场统计分布 reverberation chamber wave chaos eigenfrequency spacing distribution field statistic distribution
  • 相关文献

参考文献10

  • 1Hill D A. Plane wave integral representation for fields in reverberation chamber[J]. IEEE Trans on Electromagnetic Compatibility, 1998, 40(3) :209 -217.
  • 2张华彬,赵翔,周海京,黄卡玛.混响室的概率统计分析方法及其蒙特卡罗模拟[J].强激光与粒子束,2011,23(9):2475-2480. 被引量:29
  • 3Deus S, Koch P M, Sirko L. Statistical properties of the eigenfrequency distribution of the three-dimensional microwave cavities[J]. Phys Rev E,1995,52(1) :1146-1155.
  • 4StOckmann H J. Quantum chaos:an introduction[M]. Beijing:World Publishing Corporation,2003.
  • 5Orjubin R, Richalot E, Picon O, et al. Chaoticity of a reverberation chamber assessed from the analysis of modal distributions obtained by FEM[J]. IEEE Trans on Electromagnetic Compatibility ,2007,49(4) :762 -771.
  • 6Arnaut L R. Operation of electromagnetic reverberation chambers with wave diffractors at relatively low frequencies[J]. IEEE Trans on Electromagnetic Compatibility, 2001,43(4) :637 -653.
  • 7Zheng X, Antonsen Jr T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities: single channel case[J]. Electomagnetics, 2006,26 : 3-35.
  • 8Lehman T H. A statistical theory of electromagnetic fields in complex cavities[G]. Interaction Notes 494,1993.
  • 9陆希成,王建国,韩峰,刘钰.复杂腔体本征电磁场空间分布的统计方法[J].强激光与粒子束,2011,23(8):2167-2173. 被引量:11
  • 10Hill D A. Electromagnetic fields in cavities: deterministic and statistical theories[G]. Institute of Electrical and Electronics Engineers, 2009:94 -101.

二级参考文献32

  • 1陈海林,陈彬,李正东,易韵,陆峰.不同电磁脉冲作用下地面有限长电缆外导体感应电流的数值计算[J].强激光与粒子束,2004,16(10):1286-1290. 被引量:20
  • 2蔡佳星,仇善良,李永平,韩正甫.异型微腔本征模式分析[J].量子电子学报,2007,24(1):27-31. 被引量:1
  • 3蔡鑫伦,黄德修,张新亮.基于全矢量模式匹配法的三维弯曲波导本征模式计算[J].物理学报,2007,56(4):2268-2274. 被引量:2
  • 4Ladbury J M, Lehman T H, Koepke G H. Coupling to devices in electrically large cavities, or why classical EMC evaluation techniques are becoming obsolete[C]//IEEE International Symposium on Electromagnetic Compatibility. 2002, 2:648-655.
  • 5Hemmady S D. A Wave-chaotic approach to predicting and measuring electromagnetic field quantities in complicated enclosures[D]. MD: University of Maryland, 2006.
  • 6Holland R, John S. Statistical electromagnetics[R]. AFRL-DE-PS-TR 1998-1025, 1998.
  • 7Naus H W L. Statistical electromagnetics: complex cavities[J]. IEEE Trans on Electromagnetic Compatibility, 2008, 50(2):316-324.
  • 8Lehman T H. A statistical theory of electromagnetic fields in complex cavities[G]. Interaction Notes: IN 494, 1993.
  • 9Kostas J G, Boverie B. Statistical model for a mode-stirred chamber[J].IEEE Trans on Electromagnetic Compatibility, 1991, 33(4) :366.
  • 10Price R H, Davis H T, Wenaas E P. Determination of the statistical distribution of electromagnetic-field amplitudes in complex cavities[J].Phys Rev E, 1993, 48(6) :4716-4729.

共引文献38

同被引文献64

  • 1崔耀中,魏光辉,范丽思,万浩江,陈亚洲,贾明捷.混响室发射天线指向对场均匀性影响研究[J].微波学报,2011,27(6):42-46. 被引量:2
  • 2赵翔,黄卡玛,陈星,闫丽萍.雷电电磁场峰值的概率分布[J].强激光与粒子束,2005,17(2):253-257. 被引量:4
  • 3柳孝图.体育馆声学设计探讨[J].应用声学,1996,15(1):20-25. 被引量:4
  • 4吕英华,王旭莹.EMC分析方法与计算模型[M].北京:北京邮电大学出版社,2009.
  • 5袁智勇,李暾,陈水明,吴钒,何金良,曾嵘.混响室设计与校准测试[J].电波科学学报,2007,22(4):571-576. 被引量:29
  • 6IEC61000-4-21.- Electromagnetic compability (EMC)-Part 4 21:Testing and measurement techniques-reverberation chamber test methods [S]. 2011.
  • 7Hill D A. Plane wave integral representation for fields in reverberation chambers[J]. IEEE Trans on Electromagnetic Compatibility, 1998, 40(3) : 209-217.
  • 8Moglie F. Convergence of the reverberation chambers to the equilibrium analyzed with the finite difference time-domain algorithm[J]. IEEE Trans on Electromagnetic Compatibility, 2004, 46(3) : 469-476.
  • 9Hoijer M. Maximum power available to stress onto the critical component in the equipment under test when performing bility test in the reverberation chamber [J]. IEEE Trans on Electromagnetic Compatibility, 2006, 48(2) : 372- 384.
  • 10Gradoni G, Moglie F, Pastore A P, et al. Numerical and experimental analysis of the field to enclosure coupling in reverberation chamber and comparison with anechoic chamber[J]. IEEE Trans on Electromagnetic Compatibility, 2006, 48(1) : 203-211.

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部