期刊文献+

双自寻优小波去噪方法及其在滚动轴承故障诊断中的应用

Wavelet based de-noising double self-optimizing method and its application to ball bearing fault diagnosis
下载PDF
导出
摘要 阈值和阈值函数的选取是小波阈值去噪方法中影响去噪效果的最重要的两个因素.经典方法与后续诸多改进方法都存在两者之间相互选取无法解决耦合性的问题,难以在噪声环境中提取有用的滚动轴承故障信号.在论述了已有方法中存在的耦合性和数与数组合的问题后,提出了一种双自寻优的方法解决这种问题.双自寻优方法中把所有阈值和阈值函数的参数可能性相互组合,在这些组合中找出最优去噪组合.阈值的寻优范围由信号自身的高频死去值决定,文中给出了解决方案并予以证明,阈值函数的选取本文以带参数的软硬阈值折衷法为基准,其参数寻优范围为0到1.通过模拟轴承信号和真实轴承故障信号的实验结果表明,此算法得到了更高的信噪比和更好的图像外观. Threshold and threshold function are the key factor in threshold based wavelet de- noising. There exists coupled one-sidedness between classical and subsequent many improve- ment methods, and it difficult to extract useful rolling bearing fault signal. This paper put forward a double self-optimizing algorithm to solve the problem which existed methods exist coupled and the problem of number combination. The selection of threshold and threshold function influence each other in double self-optimizing algorithm, which can produce a varie- ty of combination and find the optimal de-noising parameters. Threshold optimal range is de- cided by the dead value of high frequency. This paper gives the solvable methods and proves it. Threshold function set benchmark for the compromise of the hard and soft threshold method and the optimal de-noising parameters is 0 to 1. The experimental results indicate that the method is highly effective in noise reduction and fault feature extraction.
出处 《陕西科技大学学报(自然科学版)》 2013年第2期113-117,131,共6页 Journal of Shaanxi University of Science & Technology
基金 国家国际科技合作项目(2010DFB43660)
关键词 信号去噪 自寻优 滚动轴承 故障诊断 signal de-noising self-optimizing ball bearing fault diagnosis
  • 相关文献

参考文献13

二级参考文献67

  • 1GaiGuanghong QuLiangsheng.TRANSLATION-INVARIANT BASED ADAPTIVE THRESHOLD DENOISING FOR IMPACT SIGNAL[J].Chinese Journal of Mechanical Engineering,2004,17(4):552-555. 被引量:4
  • 2孟志强,王鼎顺,周华安.小波图像消噪中阈值与信噪比的单峰规律及阈值试探方法[J].电子测量与仪器学报,2006,20(5):63-67. 被引量:8
  • 3JOHNSON M T,YUAN Xiaolong,REN Yao.Speech signal enhancement through adaptive wavelet thresholding[J].Speech Communication,2007,49,123-133.
  • 4SHI Y,EBERHART R C.A modified particle swarm optimizer[C]// Proceedings of the IEEE International Conference on Evolutionary Computation,Anchorage,Alaska,May 4-9,1998.Piscataway,New Jersey,IEEE,1998:67-73.
  • 5The Case Western Reserve University Bearing Data Center Website[EB/OL].http://www.eecs.cwru.edu/ laboratory/bearing/.
  • 6DONOHO D L,JOHNSTONE I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometika,1994,81(3):425-455.
  • 7DONOHO D L,JOHNSTONE I M.Adapt to unknown smoothness via wavelet shrinkage[J].Journal of the American Statistical Association,1995,90(432):1 200-1 224.
  • 8DONOHO D L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 9Ronggen Yang, Wavelet denoising using principal component analysis [ J]. Expert Systems with Applications, 2011, 2011(38) :1073-1076.
  • 10D.L. Donoho, I. M. Johnstone, Wavelet Shrinkage : Asymptopia? I J]. Journal of the Royal Statistical Society, 1995(57) :301-369.

共引文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部