期刊文献+

Burgers方程的正交基无网格Galerkin解法

Orthogonal basis meshless Galerkin method for Burgers equation
下载PDF
导出
摘要 选用正交基函数作为无网格Galerkin法中的基函数,成形了正交基无网格Galerkin法.该方法克服了当基函数项数较大时方程组出现病态这一缺点,同时使矩阵计算变得简单,提高了计算效率.对Burgers方程在时间域上采用θ加权法进行离散,空间域上采用正交基无网格Galerkin法进行离散,构造了θ加权-正交基函数的无网格Galerkin法,通过对一维Bur-gers方程进行数值计算,并和现有的数值方法结果进行比较,表明了该方法的有效性. In this paper, orthogonal basis functions were used as the basis funtions of meshless Galerkin meothod,then forming orthogonal basis function meshless Galerkin method. This method overcame the short-coming that the equations became illness when the number of the basis function was too many. At the same,this method made the matrix calculation simple and improved the calculation efficiency. To Burgers equation,the temporal was discretized by θ- weighted method,and the spatial domain was discretized by orthogonal basis function ele- ment free Galerkin method, then the θ-weighted orthogonal basis function element-free Galerkin method was constructed,one dimension Burgers equation was used to validate the algorithm, compared with existing numerical methods the results show that this method is effective.
出处 《陕西科技大学学报(自然科学版)》 2013年第2期159-162,共4页 Journal of Shaanxi University of Science & Technology
关键词 无网格伽辽金法 正交基函数 形函数 θ加权方法 BURGERS方程 , meshless Galerkin method orthogonal basis function shape function θ-weightedmethod Burgers equatoin
  • 相关文献

参考文献8

  • 1S. N. Atluri,T. Zhu. A new meshless local petrov-galerkin (MLPG) approach in computa-tion mechanics[J]. Com- putational Mechanics, 1998,22 (2) : 117-127.
  • 2W. K. Liu, S. Jun, Y. F. Zhang. Reproducing kernel parti- tale methods[J]. Numerical Method in Fluids, 1996,20 (8):1 081-1 106.
  • 3T. Belytschko, Y. Y. Lu, L. Gu. Element free Galerkin method[J]. Numerical Methods in Engineering, 1994,37 (2) :229-256.
  • 4M. R. Bate, A. Burkert. Resolution requiements for smoothed particle hydrodynamics calculations with self- gravity[J]. Monthly Notices of the Royal Astronomical Soeiety,1997,228(4) :1 060-1 072.
  • 5J. Done, A. Hnerta. Finite Element Methods for Flow Problems[ M] England : Wiley, 2003.
  • 63elytschko T,Krongauz Y, Organ D. Meshless methods: m over view and recent developments [J]. Computer Vlethods in Applied Mechanics and Engineering, 1996,139 i1) ,3-47.
  • 7张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003,20(6):730-742. 被引量:109
  • 8刘万海,孙建安,豆福全,刘兴霞,陈继宇,刘锋.用五次B样条Galerkin有限元方法求Burgers方程的数值解[J].西北师范大学学报(自然科学版),2009,45(2):35-38. 被引量:4

二级参考文献135

  • 1张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397. 被引量:84
  • 2贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166. 被引量:31
  • 3BATEMAN H. Some recent researches on the motion of fluids[J]. Monthly Weather Re, 1915, 43: 163-170.
  • 4BURGER J M. A Mathematical Model Illustrating the Theory of Turbulence [ M ]. New York: Academic Press, 1948: 171-199.
  • 5HOPF E. The partial differential equation Ul+UUx =μUxx[J]. Comm Pure App Math, 1950(3): 201- 230.
  • 6COLE J D. On a quasi- linear parabolic equation occurring in aerodynamics [J]. Quart Appl Math, 1951(9):225-236.
  • 7OZIS T, AKSAN E N, OZDES A. A finite element approach for solution of Burgers' equation[J]. Appl Math Comput, 2003, 139: 417-428.
  • 8ABBASBANDY S, DARVISHI M T. A numerical solution of Burgers' equation by modified Adomian method[J]. ApplMath Comput, 2005, 163:1265-1272.
  • 9OZIS T, ESEN A, KUTLUAY S. Numerical solution of Burgers' equation by quadratic B-spline finite element[J]. Appl Math Compu, 2005, 165:237-249.
  • 10OZIS T, OZDES A. A direct variational methods applied to Burgers' equation [J]. J Comput Appl Math, 1996, 71: 163-175.

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部