期刊文献+

大学生身体素质数据的FCM算法聚类及MATLAB实现 被引量:5

College Students' Physical Quality Data Of FCM Algorithm Clustering and Implementation of MATLAB
下载PDF
导出
摘要 大学生身体素质的准确分类,直接关系到大学体育分组教学和选才评价的合理性、有效性。传统的模糊聚类分析法有传递闭包法、编网法等.编网法虽然直观,但必须画图,不适合编程应用;传递闭包法需要计算相似矩阵的传递闭包,其计算量随分类对象数目的增加而呈指数规律增加,不宜应用推广。为此,引入FCM算法,采用身体质量指数、肺活量、耐力素质、柔韧力量素质和速度灵巧素质等5个聚类特征量,对大学生身体素质进行模糊聚类分析,利用Xie-Beni有效性指标确定最佳的分类方式,并利用MATLAB软件编程辅助计算.实践证明,该方法操作简便,科学有效,便于应用推广。 Accurate classification of college students' physical quality is directly related to college sports group teaching, personnel selection,evaluation of the rationality and effectiveness.The traditional fuzzy clustering analysis is transitive closure method,netting method etc.Although the netting method is intuitive,but it must be drawing,not suitable for application programming;The transitive closure method need to calculate the similarity matrix,but the amount of calculation with the object of classification number increases and increases exponentially,should not be applied to promote.So,we introduction of FCM algorithm,using five clustering characteristics of BMI,lung capacity,endurance,flexibility,power quality and speed of smart quality,Fuzzy Cluster Analysis of college students' physical quality,the use of Xie-Beni's validity indicators to determine the best method of classification using MATLAB software programming assistant computation.Practice has proved that the method is simple,scientific and effective,easy application and popularization.
出处 《科技通报》 北大核心 2013年第3期223-226,236,共5页 Bulletin of Science and Technology
关键词 大学生 身体素质 模糊聚类分析 FCM算法 college students physical quality fuzzy cluster analysis the FCM algorithm
  • 相关文献

参考文献10

二级参考文献58

共引文献240

同被引文献48

  • 1诸克军,苏顺华,黎金玲.模糊C-均值中的最优聚类与最佳聚类数[J].系统工程理论与实践,2005,25(3):52-61. 被引量:69
  • 2廖玉芳,潘志祥,郭庆.基于单多普勒天气雷达产品的强对流天气预报预警方法[J].气象科学,2006,26(5):564-571. 被引量:44
  • 3Rojas I,Valenzuela O,Rojas F,et al.Soft-computing techniques and ARMA model for time series prediction[J].Neurocomputing,2008,71(4-6):519-537.
  • 4Kayacan E,Ulutas B,Kaynak O.Grey system theory-based models in time series prediction[J].Expert Systems with Applications,2010,37(2):1784-1789.
  • 5Song Q,Chissom B S.Fuzzy time series and its models[J].Fuzzy Sets and Systems,1993,54(3):269-277.
  • 6Chen S M.Forecasting enrollments based on fuzzy time series[J].Fuzzy Sets and Systems,1996,81:311-319.
  • 7Komorowski T,Peszat S,Szare K.On ergodicity of some Markov processes[J].Annals of Probability,2010,38(4):1401-1443.
  • 8Shamshad A,Bawadi M A,Wan Hussin W M A,et al.First and second order Markov chain models for synthetic generation of wind speed time series[J].Energy,2005,30(5):693-708.
  • 9Raftery A E,Tavare S.Estimation and modeling repeated patterns in high-order Markov chains with the Mixture Transition Distribution(MTD)model[J].Journal of the Royal Statistical Society,Series C-Applied Statistics,1994,43:179-200.
  • 10Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-seperated clusters[J].Cybernet,1973,3(3):32-57.

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部