期刊文献+

高光谱遥感岩矿端元提取与分析方法研究 被引量:11

The end-member extraction and analysis method for rocks and minerals using hyperspectral remote sensing image
下载PDF
导出
摘要 端元提取是高光谱遥感信息提取与分析的基础,也是解决高光谱图像混合像元分解的关键。本文针对研究区高光谱遥感数据特点,进行了辐射校正、最小噪声分离变换(MNF)及纯净像元指数(PPI)处理,在此基础上,应用二维散点图和三维散点图分别提取了端元波谱,并开展了端元属性的判别研究。岩矿端元的提取与分析为后续岩矿种类识别奠定了基础,直接影响最终成果的准确度。 The end-member extraction is the foundation of the hyperspectral remote sensing information extrac- tion and analysis and is also the key to pixel unmixing. In view of hyperspectral remote sensing data characteris- tics of the study area, the authors carried out the digital image processing of the radiance correction, minimum noise fraction (MNF) and pixel purity index (PPI) and, on such a basis, extracted the end-member spectra by using two-dimensional scatter diagram and three-dimensional scatter diagram, and conducted the research on the discrimination of end-member attributes. The extraction and analysis of rocks and minerals constitute the foun- dation for the recognition of rocks and minerals and directly affect the accuracy of the results.
出处 《岩石矿物学杂志》 CAS CSCD 北大核心 2013年第2期213-220,共8页 Acta Petrologica et Mineralogica
基金 国家自然科学基金(41102225) 地质灾害防治与地质环境保护国家重点实验室自主课题(SKLGP2011Z013)
关键词 高光谱遥感 端元 最小噪声分离变换 纯净像元指数 hyperspectral remote sensing end-member minimum noise fraction (MNF) pixel purity index (PPI)
  • 相关文献

参考文献2

二级参考文献47

  • 1李加洪,秦勇.应用分形几何学与小波理论对成像光谱数据进行地物识别的模型研究[J].遥感技术与应用,1996,11(1):1-6. 被引量:3
  • 2王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31. 被引量:63
  • 3童庆禧 薛永祺 郑兰芬 等 陈述彭 童庆禧 郭华东主编.高光谱分辨率遥感信息机理与地物识别[A].陈述彭,童庆禧,郭华东主编.遥感信息机理研究[C].北京:科学出版社,1998.139-233.
  • 4寸珪,陈纪明.中国典型金矿床[M].北京:地质出版社,1995.
  • 5Boardman J W.Automating Spectral Unmixing of AVIRIS Data using Convex Geometry Concepts[A].Summaries of the Forth Annual JPL Airborne Earth Science Workshop[C].JPL Published,1993.
  • 6Winter M E.N-FINDR:an Algorithm for Fast Autonomous Spectral End-member Determination in Hyperspectral Data[A].Proceedings of SPIE Imaging Spectrometry[C].1999.
  • 7Nascimento J M P,Dias J M B.Vertex Component Analysis:A Fast Algorithm to Unmix Hyperspectral Data[J].IEEE Trans.Geosci.Remote Sensing,2005,43(4):898-910.
  • 8Craig M D.Minimum-Volume Transform for Remotely Sensed Data[J].IEEE Trans.Geosci.Remote Sens.,1994,32(3):542-551.
  • 9Bateson C A,Asner G P,Wessman C A.Endmember Bundles:A New Approach to Incorporation Endmember Variability into Spectral Mixture Analysis[J].IEEE Trans.Geosci.Remote Sensing,2000,38(2):1083-1094.
  • 10Plaza A P,Martinez,et al.Spatial/spectral Endmember Extraction by Multidimensional Morphological Operations[J].IEEE Trans.Geosci.Remote Sensing,2002,40(9):2025-2041.

共引文献91

同被引文献136

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部