期刊文献+

超分辨率重建算法综述 被引量:3

下载PDF
导出
摘要 超分辨率重建是指由同一场景的低分辨率退化图像,运用相应的算法重建一幅清晰的高分辨率图像。然而,传统的基于插值、基于重建和基于学习的方法已很难获得进一步的突破。近年新兴的过完备稀疏表示是一种新的图像表示模型,它为解决超分辨率重建中的难点问题提供了新的思路。本文通过分析超分辨率技术的以往研究和最新进展,着重讨论了各算法在重构时的优缺点,并对未来超分辨率重建技术进行了展望。
作者 刘娟娟
出处 《科技信息》 2013年第8期139-140,共2页 Science & Technology Information
  • 相关文献

参考文献19

  • 1KAMGM, GHAUDHURI S. Super-resolution image reconstruc- tion [J ].IEEE Signal Processing Magazine, 2003,20(3): 19-20.
  • 2Ng M K, Bose N K.Mathematical analysis of super-resolution methodology [J ] .IEEE Signal Processing Magazine, 2003,20(3):62-74.
  • 3TSAIRY, HUANG T S.Multiframe image restoration and regis- tration [J].Advances in Computer Vision and Image Processing, 1984, 3(1): 317-339.
  • 4浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 5S.Dai, M.Han, W.Xu, Y.Wu, and Y.Gong.Soft edge smoothness prior for alpha channel super resolution.IEEE Conference on Computer Vision and Pattern Classification(CVPR),2007.
  • 6J.Sun, Z.Xu and H.Shum.Image super-resolution using gradient profile prior.Proc.of CVPR, 2008.
  • 7IRANIM, PELEG S.Improving resolution by image registration [J] .CVGIP: Graphical Models and Image Processing, 1991,53(3):231-239;.
  • 8IRANIM, PELEGS.Super resolution from image sequences [J]. ICPR-C,1990,90:115-120.
  • 9STANK H, OSKOUI P.High-resolution image recovery from image-plane arrays using on vex projections [J ] .Journal of the Optical So- ciety of America A,1989,6(11):1715-1726.
  • 10SCHULTZ R, STEVENSON R.Improved definition video frame enhancement [C].Proceedings of the IEEE international Conference on Acoustics,Speech and Signal Processing,1995:2169-2172.

二级参考文献45

  • 1Ng M K, Bose N K. Mathematical analysis of superresolution methodology. IEEE Signal Processing Magazine, 2003, 20(3): 62-74.
  • 2Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259-268.
  • 3Capel D, Zisserman A. Super-resolution enhancement of text image sequences. In: Proceedings of the 15th International Conference on Pattern Recognition. Washington D.C., USA: IEEE, 2000. 600-605.
  • 4Ng M K, Shen H F, Lam E Y, Zhang L P. A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP Journal on Applied in Signal Processing, 2007, 2007: 1-16.
  • 5Protter M, Elad M. Image sequence denoising via sparse and redundant representations. IEEE Transactions on Image Processing, 2009, 18(1): 27-35.
  • 6Chaux C, Combettes P L, Pesquet J C, Wajs V R. A variational formulation for frame-based inverse problems. Inverse Problems, 2007, 23(6): 1495-1518.
  • 7Combettes P L, Wajs V R. Signal recovery by proximal forward-backward splitting. Multiscale Modeling and Simulation, 2006, 4(4): 1168-1200.
  • 8Candcs E J, Donoho D L. New tight frames of curvelets and optimal representation of objects with piecewise C^2 singularities. Communications on Pure and Applied Mathematics, 2004, 57(2): 219-266.
  • 9Elad M, Hel-Or Y. A fast super-resolution reconstruction algorithm for pure translational motion and common spaceimvariant blur. IEEE Transactions on Image Processing, 2001, 10(8): 1187-1193.
  • 10Zalinescu C. Convex Analysis in General Vector Spaces. New Jersey: World Scientific, 2002.

共引文献68

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部