1[1]Rui Y, Huang T S, Ortega M, et al. Relevance feedback: A power tool for interactive content-based image retrieval. IEEE Trans on Circuits and Video Technology, 1998,8(5)
2[2]Cox I, Miller M, Omohundro S M,et al. Pichunter: Bayesian relevance feedback for image retrieval system. In: Int'l Confon Pattern Recognition. Vienna, Austria, 1996.361~369
3[3]Vasconcelos, Lippman A. Bayesian representations and learning mechanisms for content based image retrieval. In: SPIE Storage and Retrieval for Media Databases. San Jose, CA, 2000
4[4]Rui Y,Huang T S. A Novel Relevance Feedback Technique in Image Retrieval. ACM Multimedia, 1999
5[5]Su Zhong,Zhang Hongjiang. Using Bayesian Classifier in Relevant Feedback of Image Retrieval
6[6]Qian Fang,Li Mingjing, Zhang Lei. Gaussian Mixture model for relevance feedback in image retrieval
7[7]Lee C,Ma W Y, Zhang H J. Information Embedding Based on User's relevance Feedback for Image Retrieval: [ Technical Report HP Laps]. 1998
8[8]Wood M E J, Campbell N W, Thomas B T. Iterative refinement by relevance feedback in content-based digital image retrieval. In:Proc. of the 6th ACM Int'l Conf on Multimedia'98. Bristol, England, 1998
9[10]Flickner M, et al. Query by Imageand video content: the QBIC system. IEEE Computer, 1995,28(9) :23~32
10[11]Pentland A, Picard R, Sclaroff S. Photobook: Content-based manipulation of image databases. International Journal of Computer Vision,1996,18(3): 233~254