期刊文献+

用脑光学成像术研究不同空间拓扑位置猫初级视皮层的空间频率反应特性 被引量:6

Spatial frequency tuning characteristics of cat primary visual cortex at different topological locations by optical imaging
下载PDF
导出
摘要 采用基于内源信号的脑光学成像方法 ,在大范围视皮层研究了不同空间拓扑位置对应的皮层区的对光栅刺激空间频率反应特性。结果表明 ,周边视野对应区对高空间频率刺激反应极弱或没有反应 ,中心视野对应区对较宽的空间频率范围内的刺激均有反应 ,但对高频刺激反应更强 ;无论在周边对应区还是中心对应区 ,其视野越靠近中心 ,其空间频率调谐曲线和截止空间频率越靠近高频 ,而且这种过渡是平缓的。以上结果说明 ,猫初级视皮层空间频率反应除了具有柱状分布特点外 ,还随皮层对应的空间拓扑位置而变化 。 Using optical imaging based on intrinsic signals, we studied spatial frequency tuning characteristics of cat primary visual cortex at different visual topological locations. We found that the areas representing the peripheral visual field had null or very weak responses to high spatial frequency grating stimuli, whereas the areas representing the central visual field responded to the stimuli of a wide range of spatial frequencies with greater responses to high spatial frequencies. The more centered the corresponding visual field of the cortical area, the higher the cutoff spatial frequency. The spatial frequency tuning curves also tended to have a smooth shift along the cortical surface. The results above demonstrate that spatial frequency tuning characteristics of the primary visual cortex change according to different visual topological locations of the cortical areas, in addition to the existence of spatial frequency columns. It is suggested that the distribution of spatial frequency columns may be related to visual topology. [WT5HZ]
出处 《生理学报》 CAS CSCD 北大核心 2000年第5期411-415,共5页 Acta Physiologica Sinica
基金 SupportedbytheNationalNaturalScienceFoundationofChina theShanghai UnileverResearchandDevelopmentFundandtheLabofVisualInformati
关键词 空间频率 空间拓扑位置 光学成像 初级视皮层 spatial frequency topological location optical imaging primary visual corte
  • 相关文献

参考文献1

  • 1张--,生物物理学报,1999年,15卷,3期,597页

同被引文献46

  • 1吕成淮,何小海,陶青川,张敏.图像复原中高斯点扩展函数参数估计算法研究[J].计算机工程与应用,2007,43(10):31-34. 被引量:11
  • 2Mountcastle VB.Modality and topographic properties of single neurons of cat's somatic sensory cortex[J].Journal of Neurophysiology,1957,20(4):408 -434.
  • 3Hubel DH,Wiesel TN.Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat[J].J Neurophysiol,1965,28:229-289.
  • 4Grinvald A.Functional architecture of cortex revealed by optical image of intrinsic signals[J].Nature,1986,324:361-364.
  • 5Grinvald A.In-vivo optical imaging of cortical architecture and dynamics[M]// Windhorst U,Johansson H,eds.Modern Techniques in Neuroscience Research.Berlin:Springer-Verlag,1999:893-969.
  • 6White BR,Bauer AQ,Snyder AZ,et al.Imaging of functional connectivity in the mouse brain[J].PIoS I,2011,6(1):e16322.
  • 7Claxton CD,Staunton RC.Measurement of the point spread function of a noisy imaging system[J].Journal of the Optical Society of America A:Optics,Image Science,and Vision,2008,25(1):1592170.
  • 8Vishwakumara K,Martens J B.Estimation of perceived image blur using edge features[J].International Journal of Imaging Systems and Technology,1996,7:102 -109.
  • 9Elder JH,Zucker SW.Local scale control for edge detection and blur estimation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20 (7):699-716.
  • 10HUBEL D H,WIESEL T N.Receptive fields and functionalarchitecture in two nonstriate visual areas(18and 19)of thecat[J].J Neurophysiol,1965,28(2):229-289.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部