期刊文献+

施氏假单胞菌F4对黄曲霉毒素B_1的酶解作用及其降解产物的初步分析 被引量:8

Enzymolysis of aflatoxin B_1 by Pseudomonas stutzeri F4 and analysis of the degrading products
下载PDF
导出
摘要 施氏假单胞菌F4能高效降解黄曲霉毒素B1(aflatoxin B1,AFB1)。研究了F4的AFB1降解活性、降解动力学以及蛋白酶K和SDS对其降解性能的影响。F4细胞悬液与毒素共培养72 h后降解率达80.03%;蛋白酶K处理对降解率没有影响,SDS处理的细胞悬液基本丧失了降解活性。不同时间点的降解液上清液仍能有效降解残留AFB1,其中以60 h的降解液上清液活性较好,与残留AFB1继续作用48 h后降解率达84.30%;而经蛋白酶K处理后降解率仅为45.42%。低浓度AFB1诱导对菌体的降解活性没有影响。上述结果提示,F4通过胞内酶作用降解AFB1。高效液相色谱对产物分析表明,F4可将AFB1酶解为至少2种产物。 Pseudomonas stutzeri F4 is capable of removing aflatoxin B1 efficiently. The properties and the kinetics of aflatoxin B1 hydrolyzed by F4, and the influence of proteinase K and SDS on its degradation performance were in- vestigated. After 72 h of cultivation, 80.03% of AFB1 was degraded by F4 cell suspension. Proteinase K had no af- fects on its degradation efficiency, while the degradation ability almost lost by SDS treatment. In addition, the cell- free supernatant of the degradation solution taken from different time also had the detoxification activity,and in which 60 h sample showed a better activity (84.30% AFB1 was degraded after continuous cultivation for 48 h). When the supernatant treated with proteinase K, the degradation efficiency was decreased to 45.42%. Low concentration of AFB~ induction had no effect on the degradation activity. These results indicated that a F4 intracellular enzyme was responsible for the degradation of AFB1. Meanwhile, HPLC chromatograms demonstrated that AFB1 was degraded to at least two products.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2013年第2期11-16,共6页 Food and Fermentation Industries
基金 国家自然科学基金项目(31060022)
关键词 黄曲霉毒素B1 施氏假单胞菌F4 酶解作用 aflatoxin B1, Pseudomonas stutzeri F4, enzymatic hydrolysis
  • 相关文献

参考文献14

  • 1Diener U L, Cole R J, Sanders T H, et al. Epidemiology of aflatoxin formation by Aspergillus flavus [ J ]. Annual Re- view of Phytopathology, 1987, 25 ( 1 ) : 249 - 270.
  • 2Kurtzman C P, Horn B W, Hesseltine C W. Aspergillus nomius, a new aflatoxin producing species related to Asper- gillus flavus and Aspergillus tamari [ J ]. Antonie Leeuwen- hock, 1987, 53(6): 147-158.
  • 3Mishra H N, Das C. A review on biological control and metabolism of aflatoxin [ J ]. Critical Reviews in Food Sci- ence and Nutrition, 2003, 43 (3) : 245 - 264.
  • 4Eaton D L, Gallagher E P. Mechanisms of aflatoxin carci- nogenesis[ J]. Annual Review of Pharmacology and Toxi- cology, 1994, 34(1): 135- 172.
  • 5Yabe K, Nakajima H. Enzyme reactions and genes in aria- toxin biosynthesis [ J]. Applied Microbiology and Biotech- nology, 2004, 64 (6) : 745 - 755.
  • 6Sweeney M J, Dobson A D. Molecular biology of myeotoxin biosynthesis[ J]. FEMS Microbiology Letters, 1999, 175 (2) : 149 - 163.
  • 7Smiley R D, Draughon F A. Preliminary evidence that degradation of aflatoxin B: by Flavobacterium aurantiacum is enzymatic [ J]. Journal of Food Protection, 2000, 63 (3) : 415 -418.
  • 8Alberts J F, Engelbrecht Y, Steyn P S, et al. Biological degradation of aflatoxin Bl by Rhodococcus erythropolis cul- tures [ J]. International Journal of Food Microbiology, 2006, 109(1/2) :121 - 126.
  • 9Teniola 0 D, Addo P A, Brost I M, et al. Degradation of aflatoxin B( 1 ) by cell-free extracts of Rhodococcus eryth- ropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556 (T) [ J]. International Journal of Food Microbi- ology, 2005, 105(2): 111-117.
  • 10Line J E, Brackett R E, Wilkinson R E. Evidence for degradation of aflatoxin B1 by Flavobacterium aurantiacum[ J]. Journal of Food Protection, 1994, 57 (9) : 788 - 791.

二级参考文献20

  • 1Eaton D L, Gallagher E P. Mechanisms of aflatoxin carci- nogenesis[ J ]. Annu Rev Pharmacol, Toxicol, 1994, 34 : 135 - 172.
  • 2Gratz S, Wu Q K, E1-Nezami H, et al. Lactobacillus rh- amnosus Strain GG Reduces Aflatoxin B- Transport, Metab- olism, and Toxicity in Caco-2 Cells[J]. Appl Environ Mi- crobiol, 2007,73 (12) : 3958 - 64.
  • 3Celyk K, Denly M, Savas T. Reduction of toxic effects of aflatoxin by using baker yeast (Saccharomyces cerevisiae ) in growing broiler chicken diets[ J]. Revista Brasileira de Zootecnia, 2003, 32(3): 615-619.
  • 4Shettyb P H, Jespersen L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents [ J ]. Trends in Food Science and Technology, 2006,17 (2) :48 - 55.
  • 5Sherry P H, Hald B, Jespersen L. Surface binding of afla- toxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods [ J ]. International Journal of Food Microbiology, 2007, 113(1) :41 -46.
  • 6Peltonen K, E1-Nezami H, Haskard C, et al. Aflatoxin B Binding by Dairy Strains of Lactic Acid Bacteria and Bifidobacteria[ J ]. J Dairy Sci, 2001,84 ( 10 ) : 2 152 - 2 156.
  • 7Haskard C A, E1-Nezami H S, et al. Surface Binding of Aflatoxin B- by Lactic Acid Bacteria[ J]. Appl Environ Mi- crobiol, 2001, 67 (7) : 3 086 -3 091.
  • 8Brady D, Stoll A D, Strake L, Dunkan J R. Chemical and enzymatic extraction of heavy metal binding polymera from isolated cell walls ofSaccharomyces cerevisiae[J]. Biotech- nology and Bioengineering, 1994, 44 (3) : 297 - 302.
  • 9Turbic A, Ahokas J T, Haskard C A. Selective in vitro binding of dietary mutagens, individually or in combina- tion, by lactic acid bacterial J]. Food Additives and Con- taminants, 2002, 19 ( 2 ) : 144 - 152.
  • 10Ciegler A, Lillehoj E B, Peterson R E,et al. Microbial Detoxification of Afl-/toxin [ J ]. Appl. Microbiol, 1966,14 (6) :934 -939.

共引文献16

同被引文献125

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部