期刊文献+

油田生产动态预警模型研究 被引量:7

Research on Dynamic Early Warning Model of Oilfield Production
下载PDF
导出
摘要 随着大庆油田的开发进入中后期,油田生产中的各个专业都积累了大量宝贵的专业数据,这些数据不仅反映了石油开采的发展轨迹,并且记录了油田开发过程中出现的产量异常下降情况,以及针对异常所采取的增产措施。文中建立了基于支持向量机的动态预警模型,通过寻找历史生产数据中的变化规律,找到生产异常报警形成模式,通过对油田开发动态数据的实时监测,可以达到提前判断出产量的异常下降,以便及早采取针对性措施,确保原油生产的良性运行。通过对大庆油田第八采油厂的历史样本进行了训练和验证,证明模型对于油田生产中发生的异常情况具有较高的的预测准确性。实验证明模型的有效性,并且提出对模型进一步改进的相关方法。 As the development of Daqing oil field in the middle and late stage of oil field production, various profession has accumulated a large amount of valuable data,these data not only reflect the petrolanm exploitation development path,but also record the abnormal production declined in the process of oilfield development,and the take measures to increase production of the abnormal. Based on the support vector machine, dynamic early warning model is established. By finding the historical production data of changes in production, find abnormal alarm formation mode. Based on the real-time monitoring for oil field development data, can judge in advance the abnormal production decline, and take targeted measures to ensure the benign operation of crude oil production. The eighth of Daqing oil field plant history samples are trained and validated,it is proved that the model for oilfield production abnormal condition has a high prediction accuracy. Experimental results show that the model is effective, and the model is further imnroved correlation method.
出处 《计算机技术与发展》 2013年第4期245-248,共4页 Computer Technology and Development
基金 黑龙江省青年骨干支撑项目(12519005)
关键词 支持向量机 油田 预警 support vector machine oilfield warning
  • 相关文献

参考文献10

  • 1潘杰珠.基于数据挖掘的预警技术研究[D].合肥:合肥工业大学,2007.
  • 2陈俏,曹根牛,陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,20(1):250-252. 被引量:20
  • 3黄谦,肖侬,刘波.基于支持向量机的网格负载信息预测模型[J].计算机技术与发展,2007,17(6):32-35. 被引量:2
  • 4张晨希,张燕平,张迎春,陈洁,万忠.基于支持向量机的股票预测[J].计算机技术与发展,2006,16(6):35-37. 被引量:28
  • 5Vapnik V, Golowich S E, Smola A. Support vector method for function approximation, regression estimation and signal pro- cessing[ C 1//Proc of the 1996 Neural Information Processing System Conference. Dever, CO, USA: MIT Press, 1997:281 - 287.
  • 6Vapnik V. An overview of statistical learning theory[ J ]. IEEE Trans. on Neural Networks, 1999,10 (5) :988-999.
  • 7Knerr S, Personnaz L, Dreyfus G. Single-layer Learning Revis- ited:A Stepwise Procedure for Building and Training a Neural Network [ M ]//Neurocomputing : Algorithms, Architectures and Applications. New York : Springer-Verlag, 1990.
  • 8Koike A, Takagi T. Prediction of protein- protein interaction sites using support vector machines [ J ]. Protein Engineering, Design & Selecion ,2004,17 (2) : 165-175.
  • 9Yan Changhui ,Dobbs D ,Hoavar V. A two-stage classifier for identification of protein-protein interface residues [ J ]. Bioin- formatics ,2004,20(s) :371-378.
  • 10Liu S, Lindholm C K. Assessing early warning signals of cur- rency crisesa: fuzzy clustering approach [ J ]. International Journal of Intelligent Systems in Accounting, Finance and Management,2006 (4) :179-202.

二级参考文献23

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2金龙.人工神经网络技术发展及在大气科学领域的应用[J].气象科技,2004,32(6):385-392. 被引量:34
  • 3邓乃扬,田英杰.数据挖掘中的新方法--支持向量机[M].北京:科学出版社,2006.
  • 4NelloC,JohnST.支持向量机导论[M].李国正,王猛,曾华军译.北京:电子工业出版社,2005:98-105.
  • 5VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6财政部注册会计师考试委员会办公室.财务成本管理[M].北京:经济科学出版社,2003..
  • 7Baba N,Kozaki M.An Intelligent Forecasting System of Stock Price Using Neural Networks[A].In Proceedings of IJCNN[C].Los Alamitos:IEEE PRESS,1992.652-657.
  • 8Raymond S,Lee T.iJADE Stock Advisor:An Intelligent Agent Based Stock Prediction System Using Hybrid RBF Recurrent Network[J].IEEE Transactions on Systems,Man,and Cybernetics-part A:Systems and Humans,2004,34(3):421-428.
  • 9张铃,张钹.人工神经网络理论及应用[M].杭州:浙江科技出版社,1995.
  • 10Burgers B C.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.

共引文献47

同被引文献40

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部