期刊文献+

B和P对GH984合金组织和力学性能的影响 被引量:8

EFFECTS OF B AND P ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF GH984 ALLOY
原文传递
导出
摘要 利用真空冶炼制备了微合金化Ni-Fe基GH984合金并热锻、轧制成棒材,采用OM,SEM和TEM观察了标准热处理后B和P微合金化GH984合金的微观组织,并研究了B和P微合金化对合金力学性能的影响.结果表明:B或P的微合金化对GH984合金中的析出相影响不大,合金中的析出相为γ′相、Ti(C,N)相、MC型和M_(23)C_6型碳化物.然而,B和P同时添加使M_(23)C_6型碳化物形貌由块状向粒状转变并均匀分布于晶界;B和P的添加对合金的室温和700℃拉伸强度无明显影响,但可成倍提高合金的高温拉伸塑性.持久寿命随B和P的添加显著提高,此外,相对单独添加B,B和P的同时添加可以更好地改善合金的持久性能.持久试样的断口观察表明,B和P微合金化明显改善了晶界强度,断裂模式由沿晶断裂转变为混合断裂. The Ni-Fe based superalloy GH984 with microalloying is fabricated by vacuum in- duction furnace and hot worked by hot forging and rolling. The effect of B and P microalloying on microstructure and mechanical properties of GH984 alloy was investigated by OM, SEM and TEM after standard heat treatment. The experiment results showed that the addition of B and P has no obvious effects on the microstructure of GH984 alloy which has precipitates of spherical .y/, Ti(C, N), blocky MC as well as discrete M23C6 distributing along grain boundary. Moreover, the addition of B and P has no obvious influence on the tensile strength at room temperature and 700 ~. However, tensile ductility increases greatly at 700 ~ after B and P doping. It is worth to note that B and P microslloying can improve the stress rupture life of the alloy significantly. For example, the rupture life at the condition of 700 ~ and 350 MPa increases from initial 115.03 h to 984.15 h. Investigation on the microstucture of the creep samples exhibites that B and P could effectively improve the strength of grain boundary and the fractural model from intergranular fracture to intergranular/transgranular mixed fracture.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2013年第4期421-427,共7页 Acta Metallurgica Sinica
基金 国家高技术研究发展计划项目2012AA03A50l 国家自然科学基金项目51172101资助~~
关键词 GH984 抗热腐蚀高温合金 B和P微合金化 微观组织 拉伸性能 持久性能 GH984, heat-resistant superalloy, B and P microalloy, microstructure, tensileproperty, creep strength
  • 相关文献

参考文献29

  • 1Guo J T. Acta Metall Sin, 2010; 46:513.
  • 2JCrgen B, Sven K, Blum R. Energy, 2006; 31:1439.
  • 3Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Chem Phys, 2005; 90:275.
  • 4Jablonski P D, Hawk J A, Cowen C J, Maziasz P J. J Metal, 2012; 64:271.
  • 5Guo J T, Du X K. Acta Metall Sin, 2005; 41:1221.
  • 6WangSH, DuX K, XuH Z, YuCS, GuoJT, HuQW. Acta MetaU Sin, 1995; 31(suppl.): 137.
  • 7Zhang J, Luo Y S, Zhao Y S, Yang S, Jia Y L, Cui L L,Xu J W, Tang D Z. J Aeronaut Mater, 2011; 31(suppl.): 9O.
  • 8Sun W R, Guo S R, Lu D Z, Hu Z Q. Metall Mater Trans, 1997; A28:649.
  • 9Hu Z Q, Song H W, Guo S R, Sun W R. J Mater Sci Technol, 2001; 17" 39901.
  • 10Xiao L, Chen D L, Chaturvedi M C. Metall Mater Trans, 2005; A36:2671.

同被引文献73

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部