期刊文献+

Eu掺杂ZnO结构光电性质的第一性原理及实验研究 被引量:11

FIRST-PRINCIPLES AND EXPERIMENTAL STUDY ON THE ELECTRONIC AND OPTICAL PROPERTIES OF Eu DOPED ZnO STRUCTURE
原文传递
导出
摘要 采用基于密度泛函理论的第一性原理平面波超软赝势方法,计算了稀土Eu掺杂ZnO结构的能带结构、态密度以及光学性质,并与未掺杂体系进行了对比分析.结果表明,Eu掺杂的ZnO结构引入了由Eu贡献的导电载流子,体系的电导率增强,Fermi能级上升进入导带并表现n型导电性.光学性质上,掺杂结构在低能区域的吸收系数要比纯净ZnO高.在随后的实验部分,通过烧结法制备了Eu掺杂的ZnO粉体,并利用SEM,XRD和光致发光光谱(PL)表征了掺杂前后ZnO结构的变化.结果表明,Eu的掺入使得ZnO的晶格常数变大,结晶程度变弱. Pure and Eu doped ZnO were calculated by first-principles full potential linearized augmented plane wave ultra-soft pseudo-potential method to investigate band structures, density of states (DOS) and optical properties of the structures. The results show that the conduction bands gen- erate conductive carriers introduced by impurity atom of Eu. The electrical conductivity of the system is improved and the Fermi levels shift upward into the conduction band and show n-type conductivity. The absorption coefficient of Eu doped ZnO are higher than that of pure ZnO in low energy region. In the experiment part, pure and Eu doped ZnO powder were prepared through sintering method and the corresponding properties of the samples were investigated by XRD, SEM and photoluminescence (PL) spectra, which show that the lattice constants of ZnO become larger and crystallization turn worse after doping.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2013年第4期506-512,共7页 Acta Metallurgica Sinica
基金 国家青年科学基金项目11104114 山东省科技发展计划项目2009GG2003028资助~~
关键词 ZNO EU 掺杂 第一性原理 ZnO, Eu, doping, first-principles
  • 相关文献

参考文献28

  • 1Huang S Y, Xu S, Chai J W, Cheng Q J, Long J D, Os- trikov K. Mater Left, 2009; 83:972.
  • 2Zhou H M, Yi D Q, Yu Z M, Xiao L R, Li J, Wang B. Acta Metall Sin, 2006; 42:505.
  • 3Lu Y F, Ye Z Z, Zhu L P, Zeng Y J, Huang J Y, Zhao B H. J Mater Sci Technol, 2013; 29:154.
  • 4Huang G S, Wu X L, Cheng Y C, Shen J C, Huang A P, Chu P K. Appl Phys, 2007; 86A: 463.
  • 5Pei G Q, Xia C T Wu B, Wang T. Comput Mater Sci, 2008; 43:489.
  • 6Kaur G, DwJvedi Y, Rai S B. J Fluoresc, 2011; 21:423.
  • 7Peng Z J, Yang Y Y, Wang C B, Fu Z Q. Acta Metall Sin, 2008; 10:1265.
  • 8Abdullah M, Panatarani C, Kim T O, Okuyam K. J Alloys Compd, 2004; 377:298.
  • 9Ronfard-Haret J C, Valat P, Wintgens V, Kossanyi J. J Lumin, 2000; 91:71.
  • 10Lang J H, Li X, Yang J H, Yang L L, Zhang Y J, Yan Y S, Han Q, Wei M B, Gao M, Liu X Y, Wang R. Appl Surf Sci, 2011; 257:9574.

同被引文献71

  • 1张孔辉,肖芝燕,张喜田.溶胶-凝胶法制备纳米ZnO薄膜的结构和光学性质[J].人工晶体学报,2005,34(3):487-490. 被引量:7
  • 2康明,卢忠远,尹光福,孙蓉,唐靳.氧化锌基红色稀土发光材料的制备研究[J].材料导报,2006,20(12):129-131. 被引量:4
  • 3万齐欣,熊志华,饶建平,戴江南,乐淑萍,王古平,江风益.Ag掺杂ZnO的第一性原理计算[J].Journal of Semiconductors,2007,28(5):696-700. 被引量:7
  • 4张金奎,邓胜华,金慧,刘悦林.ZnO电子结构和p型传导特性的第一性原理研究[J].物理学报,2007,56(9):5371-5375. 被引量:29
  • 5申德振,梅增霞,梁会力,杜小龙,叶建东,顾书林,吴玉喜,徐舂祥,朱刚毅,戴俊,陈明明,季旭,汤子康,单崇新,张宝林,杜国同,张振中,氧化锌基材料、异质结构及光电器件,发光学报,31(1),1(2014).
  • 6H. Li, S. Jiao, S. Bai, H. Li, S. Gao, J.Wang, Q. Yu, F. Guo, L. Zhao, Precursor-controlled synthesis of different ZnO nanostruc- tures by the hydrothermal method, Phys. Status Solidi (a), 211, 595 (2013).
  • 7H. Li, S. Jiao, H. Li, Growth and characterization of ZnO nano- flakes by hydrothermal method: effect of hexamine concentration, J. Mater. Sci. - Mater. Electron, 25, 2569(2014).
  • 8S. Jiao, K. Zhang, S. Bai, H. Li, S. Gao, H. Li, J. Wang, Q. Yu, F. Gun, L. Zhao, Controlled morphology evolution ofZnO nanostruc- tures in the electrochemical deposition: From the point of view of chloride ions, Electroehim. Act,a, 111, 64(2013).
  • 9S. Sun, S. Jiao, K. Zhang, D. Wang, S. Gao, H. Li, J. Wang, Q. Yu, F. Guo, Nucleation effect and growth mechanism of ZnO nanostruc- tures by electrodeposition from aquous zinc nitrate baths, J. Cryst. Growth, 359, 15(2012).
  • 10P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, A. Yoshida, Photoluminescence and absorption in sol-gel-derived ZnO films, J. Lumin., 126, 800(2007).

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部