期刊文献+

钛合金超声波焊接温度场和应力场的数值模拟 被引量:6

Numerical Simulation on Temperature and Stress Field in Ultrasonic Welding Process for Titanium Alloy
下载PDF
导出
摘要 利用便携式红外测温仪对Ti6Al4V钛合金超声波焊接的温度进行测试;利用ABAQUS大型有限元分析软件建立钛合金超声波焊接热-结构耦合二维轴对称有限元模型,对其不同焊接参数下的温度场和应力场进行分析。结果表明:用便携式红外测温仪所测钛合金超声波焊接焊点边缘的最高温度为620℃,与模拟的结果较接近;焊接界面为高温集中区,最高温度分布在界面中心位置(高达1172.4℃);焊接的温升在前10 ms陡升至500℃左右,随后的温升较平缓且近似线性的增长;最大应力发生在铁砧的上表面中心处,它随焊接压力的增加而增大,但是增加幅度不大;其次应力较大处为焊头边缘下方的钛合金界面处,它随焊接压力的增加而增大,并且增加幅度较大。 The ultrasonic welding temperature of Ti6A14V alloy was tested by portable infrared thermometer. Thermal-structure coupled finite element model which was in two dimensions and axial symmetry was built and the temperature field and stress field of the titanium alloy ultrasonic welding with different welding parameters were analyzed by ABAQUS software. The results show that the highest temperature of ultrasonic welding the edge of titanium alloy was tested by portable infrared thermometer, which is 620℃, is closed to the simulation result. The high temperature mainly concentrates upon weld interface and the highest temperature(1172.4℃) is located in the center of the weld interface. Temperature rise for welding rises sharply in the first 10 ms, but with the time increasing, the growth of temperature rise becomes gentle. The maximum stress occurs in the center of the top surface of the anvil and it increases slightly with the increase of the welding pressure. The second largest stress occurs in the place of the interface under welding head edge of titanium alloy and it increases significantly with the increase of welding pressure.
出处 《热加工工艺》 CSCD 北大核心 2013年第7期140-144,147,共6页 Hot Working Technology
基金 国家自然基金资助项目(50865007) 教育部科学技术研究重点项目(211093) 江西省自然科学基金项目(2010GZC0139)
关键词 TI6AL4V钛合金 超声波焊接 热-结构耦合有限元分析 红外测温仪 Ti6A14V alloy ultrasonic welding thermal-structure coupling finite element analysis infrared thermometer
  • 相关文献

参考文献10

  • 1张义福,朱政强,张刚昌,曾纯,熊志林.超声波焊接下光纤埋入金属基体的热机耦合有限元分析[J].上海交通大学学报,2010,44(S1):142-145. 被引量:6
  • 2曾纯,朱政强,陈长青,张义福,熊志林.超声波金属焊接中的温度与应力分布[J].上海交通大学学报,2010,44(S1):54-57. 被引量:9
  • 3Ding Y, Kim J K, Tong P. Numerical analysis of ultrasonic wire bonding: Effects of bonding parameters on contact pressure and frictional energy [J]. Mechanics of Materials, 2006,38(1):11-24.
  • 4Ding Y, Kim J K. Numerical analysis of ultrasonic wire bond- ing: Part2. Effects of bonding parameters on temperature rise [J]. Microelectronics Reliability,2008,48(1):149-157.
  • 5Zhang C B. Li L J. A friction-based finite element analysis of ultrasonic consolidation[J].Welding Journal,2008,87(7): 187-194.
  • 6Siddiq A, Ghassemieh E, Thermomechanical analyses of ultra- sonic welding process using thermal and acoustic softening ef- fects [J]. Mechanics of Materials,2008,40:982-1000.
  • 7Elangovan S, Semeer S, Prakasan K. Temperature and stress distribution in ultrasonic metal welding-an FEA-based study [J]. Journal of Materials Processing Technology,2009,209:1143-1150.
  • 8朱政强,吴宗辉,王倩.钛合金Ti6Al4V超声波焊接研究[J].热加工工艺,2011,40(11):115-117. 被引量:2
  • 9李国华,吴淼.现代无损检测与评价[M].北京:北京大学出版社.2009.304.
  • 10De Vries E. Mechanics and mechanisms of ultrasonic metal welding[D]. The Ohio State University, 2004.

二级参考文献15

  • 1Zhang Yu, Yutaka S Sato, Hiroyuki Kokawa, et ol. Microstruc- rural characteristics and mechanical properties of Ti-6Al-4V fric- tion stir welds[J]. Materials Science and Engineering, 2008,485: 448.-455.
  • 2Malinov S,Sha W,Mckeown J J. Modelling the correlation be- tween processing parameters and properties titamium alloys us- ing artificial neural network [J]. Computational Materials Sci- ence, 2001,21:375-394.
  • 3Yang Y,Ram G D J,Stucker B E.Bond formationand fiber embedment during ultrasonic consolidation. Journal of Materials . 2009
  • 4Dunne F P N.Introduction to computational plasticity. . 2005
  • 5Daud Y,Lucas M,Huang Z.Superimposed ultrasonicoscillations in compression tests of aluminum. Ultrasonics Sonochemistry . 2006
  • 6Naidu N K R,Raman S G S.Effect of contact pres-sure on fretting fatigue behavior of Al-Mg-Si alloyAA6061. International Journal of Fatigue . 2005
  • 7Zhang B C,Li L.A friction-based finite element anal-ysis of ultrasonic consolidation. Welding Journal . 2008
  • 8KONG C Y,SOAR R C,DICKENS P M.Ultrasonic consolidation for embedding SMA fibres within aluminium matrices. Composite Structures . 2004
  • 9B. Langenecker.Effects of Ultrasound on Deformation Characteristics of Metals. IEEE Trans. Sonics and Ultrasonics . 1966
  • 10DAY A J.An analysis of speed, temperature, and performance characteristics of automotive drum brakes. Journal of Tribology Transactions of the ASME . 1988

共引文献12

同被引文献34

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部