期刊文献+

两种基于Anscombe变换域滤波的低剂量CT重建方法讨论 被引量:2

Comparison of Two Projection Restoration Based Low-dose CT Reconstruction Methods
下载PDF
导出
摘要 目的:低剂量CT重建已成为CT成像的研究热点,针对低剂量CT成像质量退化问题,本文对两种基于Anscom-be变换域滤波的低剂量CT重建方法进行了讨论比较。方法:这两种方法分别为基于投影数据非单调性全变分最小恢复的低剂量CT重建方法和基于自适应模块匹配三维滤波低剂量CT重建方法。二者皆首先通过非线性Anscombe变换将满足Poisson分布的投影数据转化为近似Gaussian分布,其后再对变换后的Gaussian型数据分别进行非单调性全变分最小化算法(Nonmonotone Total Variation Minimization,NTVM)滤波和自适应模块匹配三维(Block-Matching and 3D,BM3D)滤波,最后再分别对Anscombe逆变换数据实现传统的滤波反投影(Filtered Back Projection,FBP)CT重建;我们通过数字体模仿真实验对两种方法分别进行了定性和定量比较分析。结果:实验结果表明,两种方法均能有效去除噪声、抑制伪影、提高低剂量CT重建图像质量。结论:BM3D滤波无需人工设置滤波参数,可实现自适应低剂量CT图像重建;重建时间方面,基于投影数据非单调性全变分最小恢复的低剂量CT重建方法更有优势。 Objetcive: Low-dose CT reconstruction has become the focus of CT imaging study. For low-dose CT imaging, two Anscombe transform based low-dose CT reconstruction methods were compared in this paper. Methods: These two reconstruction methods are based on projection restoration with non-monotone total variation minimization and Block-Matching and 3D, respectively. Projection data is transformed from Poisson distribution to Gaussian distribution using nonlinear Anscombe transform firstly. Then, the Anscombe transformed data is filtered by an efficient NTVM denoising algorithm and BM3D filtering, respectively. Last, the reconstruction is achieved by inverse Anscombe transform and FBP method, respectively. And finally the CT image was reconstructed by FBP approach. Simulated digital phantom experiments were conducted to compare these two methods qualitatively and quantitatively. Results: The results demonstrate that these two reconstruction methods can achieve a good performance in noise reduction and artifacts suppression. Conclusions: Because the variance of the Gaussian noise is known, the proposed scheme can be implemented without any manual parameters in BM3D. The method based on projection restoration with NTVM performs well in terms of reconstruction time.
出处 《中国医学物理学杂志》 CSCD 2013年第2期4023-4026,共4页 Chinese Journal of Medical Physics
关键词 低剂量CT Anscombe变换 非单调性全变分 BM3D滤波 投影数据恢复 Low-dose CT Anscombe transform non-monotone total variation BM3D filtering projection restoration
  • 相关文献

参考文献13

  • 1Brenner DJ,Hall EJ.计算机断层扫描-一种正在增加的辐射源[J].新英格兰医学杂志,2007,357(22):2277-2284.
  • 2Li T,Li x,王晶,等.低剂量X-CT的非线性投影平滑[J].电气和电子工程师协会核科学会报,2004,51(5):2505-2513.
  • 3王晶,李天芳,卢虹冰,等.基于惩罚加权最小二乘方法的低剂量X-CT投影数据降噪与图像恢复[J].电气和电子工程师协会医学影像汇刊,2006,25(10):1272-1283.
  • 4钱姗姗,黄静,马建华,张华,刘楠,张喜乐,冯前进,陈武凡.基于投影数据非单调性全变分恢复的低剂量CT重建[J].电子学报,2011,39(7):1702-1707. 被引量:12
  • 5毕一鸣,马建华,刘楠,路利军,余晓锷,冯前进,陈武凡.基于Anscombe变换域BM3D滤波的低剂量CT重建[J].计算机工程与应用,2010,46(13):216-220. 被引量:10
  • 6马建华,梁振荣,范毅,等.存在背景电子噪声的x射线投影数据的方差分析[J].医学物理,2012,39(7):4051-4065.
  • 7Anscombe FJ.满足泊松分布,二项分布和负二项分布的数据变换[J].Biometrika,1948,15:246-254.
  • 8喻高航,祁力群,Yu H.基于非单调性Chambolle梯度投影算法的全变分图像重建[J].数学成像和视觉期刊,2009,35(2):143-154.
  • 9Barzilai J,Bor-wein JM.两点步长梯度算法[J].IMA数学分析期刊,1998,8(1):141-148.
  • 10Chambolle A.一种基于全变分最小化和应用的算法[J].数学成像和视觉期刊,2004,20:89-97.

二级参考文献19

  • 1Gaohang Yu,Liqun Qi,Yuhong Dai.On Nonmonotone Chambolle Gradient Projection Algorithms for Total Variation Image Restoration[J]. Journal of Mathematical Imaging and Vision . 2009 (2)
  • 2Yu-Hong Dai,Roger Fletcher.Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming[J]. Numerische Mathematik . 2005 (1)
  • 3Antonin Chambolle.An Algorithm for Total Variation Minimization and Applications[J]. Journal of Mathematical Imaging and Vision . 2004 (1-2)
  • 4Chan T,Shen J.Image Processing and Analysis—Variational,PDE,Wavelet,and Stochastic Methods. . 2005
  • 5Fessler J A.ASPIRE3.0user’’s guide:A sparse iterative re-construction library. Communication&Signal ProcessingLaboratory Technical Report.293 .
  • 6Bai M,Chen J H,Raupach R,et al.Effect of nonlinear three-dimensional optimized reconstruction algorithm filter on imagequality and radiation dose:Validation on phantoms. Medical Physics . 2009
  • 7DJ Brenner,EJ Hall.Computed tomography-an increasing source of radiation exposure. New England Journal of Medicine, The . 2007
  • 8Anscombe FJ.The transformation of Poisson, binomial and negative-binomial data. Biometrika . 1948
  • 9Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena . 1992
  • 10Barzilai J,Borwein JM.Two point step size gradient methods. IMA Journal of Numerical Analysis . 1988

共引文献20

同被引文献13

  • 1Yanagawa M,Tomiyama N,Honda O,et al.Multidetector CT of the lung: image quality with garnet-based detectors[J].Radiology, 2010,255 (3) : 944-954.
  • 2Marin D,Nelson RC,Schindera ST,et al.Low-tube-voltage,high- tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruc- tion algorithm-initial clinical experience[J].Radiology, 2010,254 ( 1 ) : 145-153.
  • 3Yu L,Bruesewitz MR,Thomas KB,et al.Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implemen- tations, and piffalls[J].Radiagraphies, 2011,31 (3) : 835-848.
  • 4Neroladaki A,Botsikas D,Boudabbous S,et al.Computed tomogra- phy of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations[J].Eur Radiol, 2013,23 (2) : 360-366.
  • 5Papadakis AE,Perisinakis K,Raissaki M,et al.Effeet of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral pediatric and adult CT angiography:a phantom study [J].Invest Radiol, 2013,48 ( 4 ) : 192-199.
  • 6Yu L, Li H, Fletcher JG, et al.Automatic selection of tube poten- tial for radiation dose reduction in CT: a general strategy[J].Med Phys, 2010,37( 1 ) : 234-243.
  • 7鲍润贤.低剂量CT筛查肺癌之现状和展望[J].中国肿瘤临床,2009,36(6):301-307. 被引量:3
  • 8叶剑定.低剂量CT在早期肺癌筛查中的意义[J].上海医药,2013,34(10):12-14. 被引量:13
  • 9刘文磊,戎军艳,高鹏,廖琪梅,卢虹冰.基于投影域数据恢复的低剂量CT稀疏角度重建[J].CT理论与应用研究(中英文),2013,22(3):421-428. 被引量:3
  • 10张善立,张华,胡德斌,曾栋,边兆英,路利军,马建华,黄静.基于边缘检测算子的Huber正则化阈值选择方法在低剂量CT重建中的应用[J].南方医科大学学报,2015,35(3):375-379. 被引量:5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部