期刊文献+

一种基于二次样条母小波函数的心电QRS复合波检测算法 被引量:2

A Quadratic Spline Mother Wavelet Function Based ECG QRS Detection Algorithm
下载PDF
导出
摘要 目的:由于QRS复合波是心电信号中最重要的特征波,它的特征信息是心脏病分析和诊断的重要依据。在心电信号的分析、处理和特征信号提取中,QRS复合波的识别最为关键,心率的计算和分析以及P波和T波的检测都基于QRS复合波的精确定位。本研究通过二次样条小波函数的心电QRS复合波检测算法快速且准确地定位QRS复合波的特征点,为心电信号自动分析提供新的手段。方法:提出了一种基于二次样条小波函数的心电QRS复合波检测算法。采用二次样条母小波函数对心电信号作四尺度分解,得到相应尺度下的小波系数,在尺度三内,利用阈值搜索小波系数正负极大值对之间的过零点,确定R波位置,再在尺度一R波前后寻找局部模极大值对以确定QRS复合波起始点、终止点,通过调整阈值删除误检点,补偿漏检点,提高检测率。结果:采用MIT-BIH一些典型心电数据进行验证,取得99.59%准确率,与差分阈值、帯通滤波等算法相比具有方法简单、计算量小、抗干扰强,既达到了很高的准确率,又保证了运算时间。结论:本算法能够准确、快速地识别被噪声干扰的心电信号的QRS复合波,因而在心电信号的自动分析中有很好的应用前景和较高的实用价值。 Objective: the QRS wave is the most important characteristic waves of ECG signals, and the feature information is an important basis for heart disease diagnosis and analysis. In the analysis, processing and extraction the feature of the ECG signal, the identification is the key for QRS waves, the heart rate calculation and analysis, as well as the P-wave and T-wave detection are based on precise positioning of the QRS wave. This research through a quadratic spline mother wavelet function based ECG QRS detection algorithm is quickly and accurately locates the feature points of the QRS wave, and provides a new means of automatic analysis of ECG. Methods: a quadratic spline mother wavelet function based ECG QRS detection algorithm was Proposed. The quadratic spline mother wavelet function ECG signal decomposition in four dimensions, and get the corresponding scale of wavelet coefficient, in the scale of three, using the threshold search coefficient between the positive and negative maxima on the zero crossing, to determine the R wave position, and looking for local maxima in the scale of one before and after the R wave to delete incorrect points to determine QRS wave start points, end points, by adjusting the threshold to compensate for missed points to improve the detection rate. Results: With the MIT-BIH ECG database data validation, QRS complex wave correct detection rate of 99.59%, compared with differential threshold, band-pass filtering, this algorithm is simple, small amount of calculation, strong anti-interference, can achieve a high rate of accuracy, and ensure the operation time. Conclusions: This algorithm can accurately and quickly identify the noised QRS wave of ECG signal, and the automatic analysis of ECG signal has a good application prospect and a high practical value.
出处 《中国医学物理学杂志》 CSCD 2013年第2期4036-4040,共5页 Chinese Journal of Medical Physics
基金 国家自然科学基金(61170302) 浙江省大学生科技创新活动计划(新苗人才计划)项目(KY318206999912027064)资助
关键词 心电信号 小波变换 QRS复合波 ECG signal wavelet transform QRS composite wave
  • 相关文献

参考文献6

二级参考文献30

共引文献29

同被引文献13

  • 1张毅,谭刚,罗元.基于ADT与回溯重检的QRS波实时检测算法[J].华中科技大学学报(自然科学版),2013,41(S1):375-378. 被引量:2
  • 2唐艳,汤井田.应用高阶统计方法实现R波的检测[J].中国医学物理学杂志,2005,22(6):739-741. 被引量:1
  • 3DurstonS.袖珍心电图解读[M].刘刚,郭继鸿.北京:人民军医出版社.2011:69-70.
  • 4Zhang F, Wei Y, Lian Y. Frequency-response masking based filter bank for QRS detection in wearable biomedical devices [C]//Proc of IEEE International Symposium on Circuits and Systems. Taipei, Taiwan: IEEE Press, 2009: 1473-1476.
  • 5Moraes JC, Freitas MM, Vilani FN, et al. A QRS complex detection Algorithm using electrocardiogram leads [C]//Proc. of Computers in Cardiology. Memphis, USA: IEEE Press, 2002: 205-208.
  • 6Christov II. Real time electrocardiogram QRS detection using com- bined adaptive threshold [J]. Biomedical Engineering Online, 2004, 3:1-9.
  • 7Huang B, Wang Y. Detecting QRS complexes of two-channel ECG signals by using combined wavelet entropy [C]//Proc. of the 3 rd IEEE ICBBE. Beijing, China: IEEE Press, 2009: 1-4.
  • 8Hamilton P, Curley M. Open Source ECG Analysis Software [EB/OL]. (2003-04-24). http://www.eplimited.com/.
  • 9Sungho OH. A new quality measure in electrocardiogram signal [D]. Florida USA: University of Florida, 2004.
  • 10Krasteva V, Jekova I. QRS template matching for recognition of ventricular ectopie beats [J]. Annals of Biomedical Engineering, 2007, 35(12): 2065-2076.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部