期刊文献+

基于零均值特性的改进G-SVSLMS算法 被引量:1

Improved G-SVSLMS Algorithm Based on Zero Mean Characteristics
下载PDF
导出
摘要 为解决改进的基于Sigmoid函数变步长最小均方(G-SVSLMS)算法步长更新公式易受噪声干扰的问题,根据高斯白噪声的零均值特性,对G-SVSLMS算法进行改进,提出基于零均值特性的改进G-SVSLMS算法,使算法的抗噪声干扰能力明显增强。理论分析和仿真结果表明:若两算法选取相同参数α、β,则基于零均值特性的改进G-SVSLMS算法相对于G-SVSLMS算法具有小的稳态误差;在保证算法收敛的条件下,基于零均值特性的改进G-SVSLMS算法相对于G-SVSLMS算法具有较快的收敛速度。 The G-SVSLMS algorithm's step-formula can be disturbed easily by noise jamming. According to the characteristics that the mean of white Gaussian noise is zero, improved G-SVSLMS algorithm based on zero mean characteristics is put forward in order to improved G-SVSLMS algorithm's ability of anti-noise. If two algorithms choose the same parameters α、β, improved G-SVSLMS algorithm will have less steady-state error than G- SVSLMS algorithm. Under the condition that the two algorithms are convergent, the convergence rate of im- proved G-SVSLMS algorithm is bigger than that of G-SVSLMS algorithm. Improved G-SVSLMS algorithm's per- formance is testified through theoretical analysis and simulation.
出处 《电讯技术》 北大核心 2013年第3期284-287,共4页 Telecommunication Engineering
关键词 信号处理 噪声抑制 G—SVSLMS算法 零均值特性 稳态误差 收敛速度 signal processing noise suppression G-SVSLMS algorithm characteristic of zero mean steady-state error convergence rate
  • 相关文献

参考文献7

二级参考文献21

  • 1邓江波,侯新国,吴正国.基于箕舌线的变步长LMS自适应算法[J].数据采集与处理,2004,19(3):282-285. 被引量:59
  • 2吴光弼,祝琳瑜.一种变步长LMS自适应滤波算法[J].电子学报,1994,22(1):55-61. 被引量:35
  • 3覃景繁,韦岗.基于S型函数的变步长LMS自适应滤波算法[J].无线电工程,1996,26(4):44-47. 被引量:40
  • 4叶华,吴伯修.变步长自适应滤波算法的研究[J].电子学报,1990,18(4):63-70. 被引量:73
  • 5[2]Zayed Ramadan and Alexander Poularikas,A Variable Stepsize Adaptive Noise Canceller Using Signal to Noise Ratio as the Controlling Factor,IEEE,System Theory,Proceeding of the thirtysixth southeastern symposium on,2004,pp.456-461
  • 6[3]S.C.Douglas and T.H.-Y.Meng,Normalized data nonlinearities for LMS adaptation,IEEE Transactions On Signal Processing,vol.42,no.6,June1994,pp.1352-1365
  • 7[4]S.Ikeda and A.Sugiyama,An adaptive noise canceller with low signal distortion for speech codes,IEEE Trans.On Signal,Signal Processing,vol 47,no.3,March 1999,pp665-674.
  • 8Simon Haykin. Adaptive Filter Theory. Forth Edition [M].NJ:Prentice Hall ,2001.
  • 9Manolakis D G. Statistical and Adaptive Signal Processing [M]. NY: McGraw - Hill, 2003.
  • 10Proakis J G. Digital Communications. Forth Edition [M].NY: McGraw - Hill, 2001.

共引文献424

同被引文献9

  • 1周学文,柯熙政.一种新的变步长LMS自适应滤波算法[J].西安理工大学学报,2006,22(3):290-293. 被引量:8
  • 2齐林,周丽晓.变换域自适应滤波算法的研究[J].郑州大学学报(理学版),2007,39(1):61-66. 被引量:17
  • 3Zheng Fanfan,Huang Lianfen,Shi Zhiyuan, et al. Varia- ble Step-size LMS Adaptive Algorithm Based on Computational Verb Rules [ C ]//Proceedings of 2010 Interna- tional Conference on Anti-Counterfeiting Security and Identification in Communication. Chengdu: IEEE, 2010: 343-346.
  • 4Bhotto M Z A, Antoniou A. Improved data-selective LMS -Newton adaption algorithms [ C ]//Proceedings of the 16th Inernational Conference on Digital Signal Processing. Santorini-Hellas : IEEE ,2009 : 1-6.
  • 5Jimaa S A, Al-Simiri A, Shubair R M,et al. Convergence evaluation of variable step-size NLMS algorithm in adaptive channel equalization [ C ]//Proceedings of 2009 IEEE International Symposium on Signal Processing and Information Technology. Ajman:IEEE,2009: 145-150.
  • 6Qi Lin, Zhang Yanhong, Tao Ran, et al. Adaptive filtering in fractional Fourier domain [C]//Proceedings of 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Beijing : IEEE ,2005 : 1033-1036.
  • 7Narasimha M J. Block Adaptive Filter With Time-Domain Update Using Three Transforms [J]. IEEE Signal Processing Letters, 2007, 14 ( 1 ) : 51-53.
  • 8Lu Cui-hua, Li Guo-lin, Wang Dong-mei. Anti-noise Based on Improved Variable Step Size LMS Adaptive Filtering Algorithm [C]//Proeeedings of 2010 International Symposium on Image Analysis 8: Signal Processing. Taipei : IEEE ,2010:82-84.
  • 9高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析[J].电子学报,2001,29(8):1094-1097. 被引量:403

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部