期刊文献+

取值于von Neumann代数的测度 被引量:2

On Measures with Values in von Neumann Algebras
下载PDF
导出
摘要 引入了取值于 von Neumann代数的测度 ,即算子测度 ;并研究了算子测度的 σ-弱可列可加性及延拓 .将 Kluvanek延拓定理推广到 σ-弱可列可加测度 。 In this paper, it was introduced the measures with values in Von Neumann algebras, that is, operator measure, and consider the measure's σ weakly countable additivity and extension. We generalize the kluvanek extension theorem as σ weakly countably additive measures, and prove that the normalized positive operator measure on a field has a unique σ weakly countably additive extension on a σ field.
作者 魏常果
出处 《西安联合大学学报》 2000年第4期18-23,共6页
关键词 算子测度 σ-弱可列可加性 von Neumann代数 Operator Measure Probability Operator Measure σ-weakly Countable Additivity Von Neumann Algebra
  • 相关文献

参考文献6

  • 1Kadison R V,Rigrose J R.Fundamentals of the theory of operator algebras: I , II[]..1983
  • 2Diestel J,Juhl Jr. J.Vector measures[].Mathematical Survey.1977
  • 3Halmos P R.Measure theory[]..1974
  • 4Rudin W.Real and complex analysis[]..1987
  • 5Wu L S.Positive-definite generalized functions on operator algebras[].Chinese J Contemp Math.1997
  • 6Takesaki M.Theory of operator algebras: I[]..1979

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部