期刊文献+

基于线性降维方法的蛋白质四级结构类型预测 被引量:2

Classification of Protein Quaternary Structure Based on Linear Dimension Reduction Method
下载PDF
导出
摘要 提出一种新的能依据蛋白质序列自动地识别被查询蛋白质的四级结构类型的方法。首先采用伪特定位点记分矩阵方法(PsePSSM)提取蛋白质序列的特征。采用这种方法提取出的特征能尽可能多地反映蛋白质序列的原始信息如顺序和进化等信息。但随之产生的问题是特征维数很高,使得预测系统复杂化。因此,引入线性维数约简算法最大方差映射方法(MVP),它可以从高维的特征空间中提取出低维的关键特征。最后,在约简后的特征上再应用分类算法预测未知蛋白质的四级结构。试验结果表明,采用降维方法不但使得预测系统得到简化,同时还提高了分类性能。 An automated method to identify the quaternary structure of queried protein is proposed.Firstly,a PsePSSM(Pseudo Position-Specific Score Matrix) is adopted to extract the features of proteins.The features extracted by PsePSSM can mostly reflect the original information of protein sequence such as the evolution information and sequence-correlated information.But it may cause the "high dimension disaster" problem and make the prediction system complex.To overcome such a problem,a linear dimensionality reduction algorithm MVP(Maximum Variance Projections) is introduced to extract the key features from the high-dimensional PsePSSM space.Finally,based on the reduced features,classifier is used to identify the protein quaternary structure.Experiment results prove that the prediction system is simplified and classification performances are improved by adopting dimension reduction methods.
出处 《上海第二工业大学学报》 2013年第1期12-17,共6页 Journal of Shanghai Polytechnic University
基金 上海市教委科研创新项目(No.12YZ175)
关键词 蛋白质四级结构 同源寡聚蛋白质 分类 降维 quaternary structure of protein homo-oligomers classification dimension reduction
  • 相关文献

参考文献8

  • 1KLOTZ I M, LANGERMAN N R, DARNALL D W. Quaternary structure of proteins[J]. Annual Review of Biochemistry, 1970, 39: 25-62.
  • 2CHOU K C, CAI Y D. Predicting protein quaternary structure by pseudo amino acid composition[J]. Proteins, 2003, 53: 282-289.
  • 3CHOU K C. Prediction of protein cellular attributes using pseudo-amino acid composition[J]. Proteins, 2001, 43: 246-255.
  • 4CHOU K C, SHEN H B. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM[J]. Biochemical and Biophysical Research Communications, 2007, 360: 339-345.
  • 5ZHANG T H, YANG J, WANG H, et al. Maximum variance projections for face recognition[J]. Optical Engineering, 2007, 46: 067206-1-067206-8.
  • 6WANG G L, DUNBRACK JR R L. PISCES: a protein sequence cullingserver[J]. Bioinformatics, 2003, 19:1589-1591.
  • 7SCHAFFER A A, ARAVIND L, MADDEN T L, et al. Improving the accuracy of PSI-BLAST protein database searches with composition- based statistics and other refinements[J]. Nucleic Acids Research, 200 I, 29: 2994-3005.
  • 8WANG T, SHEN H B, YAO L X, et.al. PCA for predicting quaternary structure of protein[J]. Frontiers of Electrical and Electronic Engineering in China, 2008, 3: 376-380.

同被引文献19

  • 1陈铭.生物信息学[M].北京:科学出版社,2012.
  • 2SHEN H B, CHOU K C. Nuc-PLoc: A new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM [J]. Protein Engineering Design & Selection, 2007, 20: 561-567.
  • 3CHOU K C, CAI Y D. Predicting protein quaternary struc- ture by pseudo amino acid composition [J]. Proteins, 2003, 53: 282-289.
  • 4川韩榕.细胞生物学[M].北京:科学出版社,2011.
  • 5SCHAFFER A A, ARAVIND L, MADDEN T L, et al. Improving the accuracy of PSI-BLAST protein database searches with composition- based statistics and other re- finements [J]. Nucleic Acids Research, 2001, 29: 2994- 3005.
  • 6WANG T, LU H, CAO X X, et al. Predicting protein subcellular localization based on a semi-supervised algo- rithm [C]//2012 International Symposium on Instrumen-tation and Measurement, Sensor Network and Automa- tion(IMSNA). Sanya: IEEE Computer Society, 2012: 130- 133.
  • 7BELKIN M, NIYOGI E SINDHWANI V. Manifold regu- larization: A geometric framework for learning from la- beled and unlabeled examples [J]. Journal of Machine Leanfing Research, 2006, 7: 2399-2434.
  • 8HUA S J, SUN Z R. Support vector machine approach for protein subcellular localization prediction [J]. Bioinfor- matics, 2001, 17: 721-728.
  • 9ZHANG T H, YANG J, WANG H H, et al. Maximum vari- ance projections for face recognition [J]. Optical Engineer- ing, 2007, 46: 067206-1-067206-8.
  • 10SACHDEVA G, KUMAR K, JAIN P, et al. SPAAN: A softwarefor prediction of adhesins and adhesin-like proteinsusing neural networks [J]. Bioinformatics, 2005, 21(4):483-491.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部