期刊文献+

积式决策多目标规划及其新型粒子群寻优算法 被引量:2

Multi-objective Programming with Product Arbitration and a New Particle Swarm Optimization Algorithm
原文传递
导出
摘要 针对冗余自由度机器人连续轨迹多目标逆解规划问题,分析了多目标决策方法的基本原理,提出并证明了积式决策方法的可行性,并提出商式外点罚函数法,以在积式决策模型框架下处理约束.积式决策优化模型具有复杂的局部极值点结构,需要求解器具有极强的全局极值点搜索能力.为此,设计了高斯巡游粒子群优化算法.以5组通用的无约束和约束最优化测试函数为对象,比较了本文提出的高斯巡游粒子群优化算法和标准粒子群优化算法的全局极值点搜索能力,分别求解100次,结果表明,本文所提算法的求解成功率高于标准粒子群算法.针对具备复杂局部极值点结构的7维优化测试函数,所提算法寻优成功率仍达80%,而标准粒子群算法的寻优成功率下降为0,证明了所提算法具备较强的寻优能力,尤其是在高维空间上,可应用于多自由度机器人路径规划问题求解. To resolve multi-objective programming problem of the continuous trajectory for redundant robots, the principle of the multi-objective arbitration is analyzed. A product arbitration method is designed and its feasibility is shown. The quotient exterior point penalty function method is proposed to deal with the constraints in the product arbitration model. The product arbitration based optimization model has complex local extremum point structure, and requires the solver to possess very strong ability to search the global extremum. Therefore, a Gaussian rovering particle swarm optimization (GR-PSO) method is proposed. The GR-PSO and the standard PSO algorithm are used to search the global extremum of five constrained and unconstrained optimization testing functions for a hundred times respectively. The results show that the success ratio of the GR-PSO is superior to the standard PSO obviously. In resolving a 7-dimensional optimization testing function with complex local extremum point structure, the success ratio of GR-PSO is 80%, and that of the standard PSO is zero, which shows the GR-PSO has stronger ability to search the global extremum point in resolving high-dimensional optimization problem. The GR-PSO can resolve the path planning problem for robots with multiple degrees of freedom.
出处 《机器人》 EI CSCD 北大核心 2013年第2期171-177,共7页 Robot
基金 上海市科技人才计划资助项目(11R21421400)
关键词 多目标 积式决策 商式外点罚函数 粒子群 multi-objective product arbitration quotient exterior point penalty function particle swarm
  • 相关文献

参考文献29

  • 1Pareto V. Manual of political economy[M]. New York, USA: Kelley, 1971.
  • 2Salukvadze M E. Vector-valued optimization problems in con- trol theory[M]. New York, USA: Academic Press, 1979.
  • 3Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering[J]. Structural and Multidisciplinary Optimization, 2004, 26(6): 369-395.
  • 4van Veldhuizen D A, Lamont G B. Multiobjective evolution- ary algorithms: Analyzing the state-of-the-art[J]. Evolutionary Computation, 2000, 8(2): 125 - 147.
  • 5Johan A. Multiobjective optimization in engineering design - Applications to fluid power systems[D]. Sweden: Linkrping University, 2001.
  • 6Das I, Dennis J E. A closer look at drawbacks of minimiz- ing weighted sums of objectives for Pareto set generation in multicriteria optimization problems[J]. Structural Optimization, 1997, 14(1): 63-69.
  • 7Bridgman P W. Dimensional analysis[M]. New Haven, USA: Yale University Press, 1922.
  • 8Gerasimov E N, Repko V N. Multicriterial optimization[J]. So- viet Applied Mechanics, 1978, 14(11): 1179-1184.
  • 9Rentmeesters M J, Tsai W K, Lin K J. A theory of lexicographic multi-criteria optimization[C]//Second 1EEE International Con- ference on Engineering of Complex Computer Systems. Piscat- away, NJ, USA: IEEE, 1996: 76-79.
  • 10Ogryczak W. A goal programming model of the reference point method[J]. Annals of Operations Research, 1994, 51: 33-44.

二级参考文献17

  • 1武虎,李少远.基于局部信息的滚动优化与机器人路径规划[J].系统仿真学报,2004,16(8):1680-1682. 被引量:6
  • 2P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 3E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 4M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 5F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 6F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 7王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 8J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975
  • 9Yong K H Wang, Narendra Ahuja. A potential field approach to path planning[J]. IEEE Trasactions on Robotics and Autonation, 1992,8(1): 23-32.
  • 10KazuoSugibara,JohnSminth Genetic algorithms for adaptive motion planning of an autonomous mobile robots[C]// Problems IEEE Trans SMC. USA: SIM, 1997 : 138- 143.

共引文献166

同被引文献12

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部